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BRIEF INTRODUCTION TO PAINLEVÉ VI

by

Philip Boalch

Abstract. — We will give a quick introduction to isomonodromy and the sixth Painlevé

differential equation, leading to some questions regarding algebraic solutions.

Résumé(Une brève introduction à Painlevé VI). — Nous donnons une brève introduction

à l’isomonodromie et à la sixième équation différentielle de Painlevé, ce qui conduit

à des questions sur les solutions algébriques.
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1. Introduction

The sixth Painlevé equation (PVI) is a second order nonlinear differential equation

for a complex function y(t):

y′′ = R(y, y′, t)

where R is a certain rational function (see below) depending on four parameters

α, β, γ, δ ∈ C. (Thus we need to fix these parameters to get a particular PVI equation.)

The main thing one needs to know about PVI is the following:
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c© Séminaires et Congrès 13, SMF 2006



70 P. BOALCH

Fact. — Suppose we have a local solution y of PVI on some disk D ⊂ P1 \{0, 1,∞} in

the three-punctured sphere. Then y extends, as a solution of PVI, to a meromorphic

function on the universal cover of P1 \ {0, 1,∞}.

Thus solutions only branch at 0, 1,∞ and all other singularities are just poles; this

is the so-called ‘Painlevé property’ of the equation.

Thus PVI shares many of the properties of the Gauss hypergeometric equation,

which is a linear second order equation whose solutions branch only at 0, 1,∞.

Another well-known fact about PVI is that generic solutions y(t) of PVI are “new”

transcendental functions (i.e., they are not expressible in terms of classical special

functions). Thus it is very difficult to find explicit solutions to PVI in general.

However, for special values of the parameters it turns out that there are explicit

solutions, and even solutions y(t) which are algebraic, i.e., defined implicitly by poly-

nomial equations

(1) F (y, t) = 0.

Our aim is to describe some of the geometry behind PVI leading up to a description

of how some of these algebraic solutions may be constructed.

Note immediately that by definition such plane algebraic curves

{(y, t)
∣∣ F (y, t) = 0} ⊂ C2

are covers of the t-line, branched only at 0, 1,∞ and so are Belyi curves. Also, in all

examples so far, the polynomial F turns out to have integer coefficients.

To give a brief taste of the geometry let us mention that, as is often the case,

the three-punctured sphere above arises as the moduli space of (ordered) four-tuples

of points on another P1. Explicitly, to each t ∈ P1 \ {0, 1,∞} we will associate the

four-tuple (0, t, 1,∞) of points and in turn the four-punctured sphere

Pt := P1 \ {0, t, 1,∞}.

As we will explain, PVI arises by considering (isomonodromic) deformations of certain

non-rigid linear differential equations on theses four-punctured spheres. In particular

solving PVI leads to explicit linear differential equations on the four-punctured sphere

with known, non-rigid, monodromy representations.

Acknowledgments. — The reader should note that the literature on PVI is huge and

we will not attempt a survey. (A good bibliography and historical survey may be

found in [DM00].) This note is written to explain some introductory facts about the

method of [Boa05], which extends that of Dubrovin and Mazzocco [DM00]. I would

like to thank Daniel Bertrand and Pierre Dèbes for the invitation to speak at this

conference.
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2. Monodromy and actions of the fundamental group of the base

Suppose we have a complete flat connection on a fibre bundle π : M → B. Choose

a basepoint t ∈ B and let Mt = π−1(t) be the fibre of M over t. (See appendix B.)

Then given any loop γ in B based at t, we may integrate the connection on M

around γ, yielding an automorphism

aγ : Mt

∼=−→Mt

of the fibre over t. This automorphism only depends on the homotopy class of the

loop γ (since the connection is flat), and in this way one obtains an action of the

fundamental group of the base on the fibre, i.e., a homomorphism

π1(B) −→ Aut(Mt),

the monodromy action.

This should be compared with the cases of a) linear connections (where the fibre

is a vector space V and so one obtains a representation π1(B) → GL(V )), and b)

coverings (where the fibre is a finite set and so Aut(Mt) = Symn ).

We will be interested in horizontal sections of such flat connections which are finite

covers of the base — i.e., sections which only have a finite number of branches. The

point to be made here is that, in terms of the monodromy action, such sections

correspond precisely to the finite orbits of the monodromy action. Given a point of

m ∈ Mt which is in a finite orbit, the horizontal section of the connection through m

will extend, by definition, to a section with a finite number of branches.

3. Main example: the PVI fibrations

The main example of fibre bundle with complete flat connection we are interested

in here comes from geometry. It is the simplest isomonodromy or non-abelian Gauss-

Manin connection.

Take the base B to be the three-punctured sphere

B := P1 \ {0, 1,∞}.
For each point t ∈ B there is a corresponding four-punctured sphere, namely

Pt := P1 \ {0, t, 1,∞}.
Thus we can think of B as parameterising a (universal) family of four-punctured

spheres, with labelled punctures. Write a1, a2, a3, a4 for these punctures positions:

(a1, a2, a3, a4) := (0, t, 1,∞).

For each t ∈ B we consider the space of conjugacy classes of SL2(C) representations

of the fundamental group of Pt

(2) Hom(π1(Pt), G)/G
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where G := SL2(C), and we have not specified the basepoint used in π1(Pt), since

changing basepoints yields conjugate representations (which are identified in the quo-

tient (2)).

Now suppose we choose four generic conjugacy classes of G = SL2(C)

C1, C2, C3, C4 ⊂ G.

Then we can consider the subset of (2),

Ct := HomC(π1(Pt), G)/G ⊂ Hom(π1(Pt), G)/G

of representations which take simple positive loops around ai into Ci for i = 1, 2, 3, 4.

Explicitly if we choose loops γi generating π1(Pt) such that γ4 · γ3 · γ2 · γ1

is contractible and that γi is a simple positive loop around ai. Then each

ρ ∈ Hom(π1(Pt), G) determines matrices Mi = ρ(γi) ∈ G and we obtain the

explicit description:

(3) Ct
∼= {(M1, M2, M3, M4)

∣∣ Mi ∈ Ci, M4 · · ·M1 = 1}/G

where G acts by overall conjugation. A simple dimension count shows that in general

these spaces are of complex dimension two and taking the invariant functions identifies

Ct with an affine cubic surface, (cut out by the so-called “Fricke relation”between the

invariants) which is smooth in general (see e.g. [Iwa02, Boa05]).

Remark. — One might ask why, in the simplest case, one cannot have dimension

one instead, but that is because these spaces of “conjugacy classes of fundamental

group representations with fixed local conjugacy classes”, have natural holomorphic

symplectic structures on them, so are even-dimensional.

Lemma. — The surfaces Ct fit together as the fibres of a (nonlinear) fibre bundle

M −→ B

over B and this fibration has a natural complete flat connection defined by identifying

representation with the “same” monodromy.

Proof. — Choose t ∈ B arbitrarily and choose loops generating π1(Pt) to obtain an

explicit description of Ct as in (3). Then there is a small neighbourhood U of t in

B for which we can use the same loops to generate π1(Ps) for any s ∈ U . Thus we

have isomorphisms between Cs and the right-hand side of (3) for any s ∈ U . This

gives a preferred trivialisation of M over U (and one obtains the same trivialisation

if different loops were initially chosen). Since t was arbitrary we may cover B with

such patches U with a preferred trivialisation over each. This is equivalent to giving

a complete flat connection.

Thus we are now in the situation of the previous section, with a complete flat

connection on a fibre bundle.
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The Painlevé VI equation amounts to an explicit description of this connection.

Very briefly one defines two specific functions y, x on a dense open subset of M ,

which restrict to local coordinates on each fibre. (See appendix A for a better ap-

proximation.) Writing out the connection in these coordinates yields a pair of coupled

first order non-linear differential equations for y(t), x(t). Eliminating x then yields a

second order equation, the PVI equation, for y(t):

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(
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t
+

1

t − 1
+

1

y − t

)
dy

dt
+
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(
α + β

t

y2
+ γ

(t − 1)

(y − 1)2
+ δ

t(t − 1)

(y − t)2

)
.

Thus the time t in PVI is essentially the cross-ratio of the four pole positions (and is

the coordinate t on the three-punctured sphere B). Also the four parameters α, β, γ, δ

in PVI correspond to the choice of four conjugacy classes Ci ⊂ SL2(C).

The main point is that from this geometrical viewpoint we see that that branching

of solutions y(t) to PVI corresponds to the monodromy of the connection on M →
B. Since this connection is complete, its monodromy amounts to an action of the

fundamental group of B on a fibre Ct.

In particular finite-branching solutions of PVI will be defined on finite covers of B

(i.e covers of P1 branched only over 0, 1,∞) and will correspond to finite orbits of the

monodromy action.

Explicitly this monodromy action can be described as follows in terms of the stan-

dard Hurwitz action.

The three-string braid group B3 acts on G3 = G × G × G as follows

β1(M3, M2, M1) = (M2, M
−1

2
M3M2, M1)

β2(M3, M2, M1) = (M3, M1, M
−1

1
M2M1)

(4)

where Mi ∈ G. The fundamental group of the base B is the free group on two letters

π1(B) = F2 and this appears as the subgroup < β2
1 , β2

2 > of B3. This F2 action on G3

restricts and descends to an action on Ct (where the Mi arise as in (3)). Explicitly,

with our conventions, the generator β2
1 corresponds to the monodromy of y around

1 and β2
2 to the monodromy of y around 0. An equivalent way of thinking of this is

to observe this F2 also arises as the pure mapping class group of the four-punctured

sphere, which acts on the conjugacy classes of representations in the natural way, by

pullback [Boa06].

4. Algebraic solutions

The problem of finding algebraic solutions to PVI can be broken into two parts:

1) Find all the finite orbits of the explicit braid group action (4) on triples of

elements of SL2(C). (Since all algebraic solutions will be finite branching these

orbits will a priori contain the branches of all algebraic solutions.)
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