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CORRESPONDENCES, FERMAT QUOTIENTS, AND
UNIFORMIZATION

by

Alexandru Buium

Abstract — Ordinary differential equations have an arithmetic analogue in which
functions are replaced by integer numbers and the derivative operator is replaced by
a Fermat quotient operator. This paper reviews the basics of this theory and explains
some of the applications to the invariant theory of correspondences.

RésuméCorrespondances, quotients de Fermat et uniformisation)— Les équations dif-
férentielles ordinaires possédent un analogue arithmétique ou les fonctions et leurs
dérivées sont remplacées par des nombres entiers et leurs quotients de Fermat. Cet
article présente les principes de cette théorie et quelques applications a la théorie des
invariants pour les correspondances.

This paper represents a brief overview of some of the author’s work on arithmetic
differential algebra and its applications to the invariant theory of correspondences.
Arithmetic differential algebra is an arithmetic analogue of the Ritt-Kolchin differ-
ential algebra [Rit50], [Kol73] in which derivations are replaced by Fermat quotient
operators. The main foundational results and first applications of arithmetic differ-
ential algebra are contained in [Bui95], [Bui96|, [Bui00]. A further study of these
matters is contained in [Bar03], [Bui03], [Bui04], [Bui02]. A program outlining ap-
plications to the invariant theory of correspondences was sketched in the last 2 pages
of [Bui02]. The present paper reports on recent progress along this program. For a
detailed exposition of the results announced here we refer to the research monograph
[Bui05].

The paper closely follows the talk presented at the Luminy conference. The author
would like to thank the organizers of the conference for their support and encourage-
ment. This research was supported in part by NSF Grant 0096946.
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80 A. BUIUM

1. Motivation

Let X and X be two complex algebraic curves and o = (01, 02) a pair of dominant
maps:

(1) XX X

Assume X is irreducible. Denote by C(X) the field of rational functions on X and
by

(2) CX)?:={feCX) | foor=fooa}

the field of invariants of the correspondence o. It is a fact that, “most of the times”,
there are “no non-constant invariants”:

(3) C(X)° =C.

There are, of course, exceptions to this: the whole of the classical Galois theory of
curves is an exception. Here, when we say Galois theory, we mean the case when
02: X =X xG — X is a finite group action and o is the first projection; in this
case, of course, we have

C(X)? = C(X)% £ C.

In this paper we would like to view Galois theory as an exceptional (and “well un-
derstood”) situation. On the contrary, the fact that the equality (3) holds “most of
the times” will be viewed as a basic pathology in algebraic geometry that we would
like to address. Indeed equality (3) says in particular that the “categorical quotient”
X /o in the category of algebraic varieties reduces to a point and, hence, the quotient
map X — X/o cannot be viewed, in any reasonable sense, as a Galois cover. Our
aim in this paper is to show how one can construct a “larger geometry” (referred to
as d—geometry) in which X /o ceases, in many interesting situations, to reduce to a
point; in this new geometry the quotient map X — X/o will sometimes “looks like”
a Galois cover.

Our theory will be p—adic (rather than over the complex numbers C). The ba-
sic ring of our theory will be R = Z;T, the completion of the maximum unramified
extension of the p—adic integers; recall that this is the unique complete discrete valu-
ation ring with maximal ideal generated by p and residue field equal to the algebraic
closure Fy of the prime field F,. The ring R has a unique automorphism ¢ lifting
the Frobenius on R/pR. We can therefore consider the Fermat quotient operator
6:R— R,
olz) - a7

’ .
We will view ¢ as an arithmetic analogue of a derivation; our j—geometry will then

be an arithmetic analogue of the Ritt-Kolchin differential algebraic geometry [Rit50],
[Kol73], [Bui94].

(4) oz =
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CORRESPONDENCES 81

2. Toy examples

To explain what we have in mind we begin by looking at an easy example. Assume,
in what follows, that X = X = A! is the affine line over R. We assume o1 = id and
oa(x) = 22. Define the map ¢ : R — R,

= i Pl (S ‘
) o) =3 ()
and consider the (partially defined) map f: R — R,
(©) @) = 258 @) =71 o) + p o o)

note that f is not defined precisely at the roots of 1. It is trivial to check that
U(a?) =2 Y(z)
and, hence,
fa?) = f(a),
so f is an invariant for o. Note that one can write
F(x,6z,0%x,271)
7 — ) ) )
7 fl@) = S

with F, G restricted power series in 4 respectively 3 variables. This example shows
that, although no invariants for ¢ exist in algebraic geometry, invariants as in Equa-
tion 7 (which we shall refer to as §—invariants) may very well exist; this suggests to
“adjoin” ¢ to usual algebraic geometry and this is exactly what we shall soon do.
Before proceeding to the general case, let us explore the above example in further

detail. Once we discovered the invariant 7y := %

it is easy to come up with more
invariants namely 7; := 6° o . Set 7; := 1; mod p. Moreover set &’ = dz, 2 = §%x,

e.t.c. One can prove that the field extension
(8) Fg(xv Mo, 71, 72, ) - Fg(za :L'/a 1'”7 :C///7 )

is Galois with Galois group Z, . The left hand side of the above extension (8) can be
viewed as the compositum of Fg(x) (the “field of rational functions on X = A' mod p
in the old algebraic geometry”) and the field F{ (7o, 71, 72, --.) (which should be viewed
as the “field of rational functions mod p on X/o in the new geometry). The right
hand side of the extension (8) can be viewed as the “field of rational functions mod p
on X in the new geometry”. As we will see the above picture can be generalized.
Let us further postpone our discussion of the general case by looking at yet another
example. Assume in what follows that X = X = A! over R and oy = id, oo(x) =
22 —2 (the Chebyshev quadratic polynomial). Again one can show that “d—invariants

0
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82 A. BUIUM

exist, more precisely there exist restricted power series F,G in 4 and 3 variables
respectively such that

9) fz) =

satisfies

F(x,8z,0%x, (22 —4)71)
G(z,dz, (22 —4)~1)

f@* = 2) = f(a).
Also there is Galois computation similar to that in the previous example.

A natural question is whether the existence of “d—invariants” in the above 2 ex-
amples generalizes to the situation when X = X = Al ) = id, oy(z) = 22 + ¢,
¢ € Z. The answer to this question is NO! (Cf. [BZO05] for a precise statement and
for related conjectures.)

The next natural question is: what do z + 22 and 2 — 22 — 2 have in common
that does not hold for a general quadratic map = +— z2 + ¢? One possible answer is
that the maps corresponding to ¢ = 0 and ¢ = —2 possess, over the complex numbers,
analytic uniformizations in the sense that one has commutative diagrams

c 5 cC c = c
m ] lm, m] | ma
2 2
cx Z Cox c =% ¢

where 71 (2) = €2™# and m3(2) = 2™ + e~2™= respectively.

So the next question one is tempted to ask is: are there other correspondences ad-
mitting similar “analytic uniformizations”? The answer to this question is: PLENTY!
And they can be all classified.

The final question one would then ask would be: Do “d—invariants” exist for such
“uniformizable” correspondences? Again the answer to the above question tends to

be YES and the aim of this paper is to explain the theory that provides this answer.

3. Outline of the theory

To explain our main ideas it is convenient to start with an arbitrary category C;
what we have in mind is a category of spaces in some geometry. By a correspondence
we will understand a pair X = (X, o) where X is an object in C and o is a pair of
morphisms in C as in Equation (1). A categorical quotient for X will mean a pair
(Y,7) where 7 : X — Y is a morphism in C such that m o o3 = 70 0y and with the
property that for any other pair (Y’,7') with 7/ : X — Y’, 7’ o 01 = 7/ 0 09 there
exists a unique € : Y — Y’ such that eom = #’. We write Y = X/o. (Categorical
quotients are sometimes called co-equalizers.) We will also give, in each concrete
example, a class of objects of C which we call trivial. For instance, if C is the category
of algebraic varieties, the trivial objects will be declared to be the points. If X is a
correspondence between curves, possessing an infinite orbit (i.e., a sequence of distinct
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points Q1,Qs, ... € X such that 02(Q;) = 01(Qiy1) for i > 1), then clearly X/o is
trivial. To remedy this situation we will proceed as follows.

1) For each p we will “adjoin” the Fermat quotient operator § = ¢, to usual algebraic
geometry; this will lead us to consider a category Cs that underlies what we shall refer
to as “d—geometry”.

2) For any correspondence X in the category of smooth curves over the ring of
S—integers O of a number field we will consider the correspondences X, and Xc¢
deduced by base change via O C @KJ = ZZT and O C C, where p runs through
the set of unramified places outside S. To each X,, = (X, 0,) we will associate a
correspondence X5 = (X5, 05) in Cs, where § = dp,.

3) We will formulate a conjecture (and state results along this conjecture) essen-
tially asserting that if X¢ has an infinite orbit then Xs/0s is non-trivial in Cs for
almost all places p if and only if X¢ admits an analytic uniformization (in a sense to
be explained below).

The rest of the paper is devoted to explaining the above 3 steps.

4. Uniformization

We begin by explaining the concept of analytic uniformization for correspondences
on complex algebraic curves. Let X = (X, o) be a correspondence in the category of
complex algebraic curves. We assume X, X are non-singular connected and oy and
oo are dominant. We say that X has an analytic uniformization if one can find a
diagram of Riemann surfaces

s & s = s
Tl |7 T
bl (i X! Lé) X/

X & x B X
with S a simply connected Riemann surface, 7,70 automorphisms of S, 7,7 Galois
covers of degree < oo, and u, @ inclusions with X'\ X and X'\ X finite sets containing
the ramification locus of 7w and 7 respectively. It is easy to “classify” all correspon-
dences which admit an analytic uniformization and possess an infinite orbit. The
details of the classification are tedious and will be skipped here; we content ourselves
with a few remarks. There are 3 cases: the spherical, flat and hyperbolic case accord-
ing as S is CP!, C, or H (the upper half plane) respectively. In the spherical case
everything boils down to the (well known) classification of finite groups of automor-
phisms of CP!. In the flat case the Galois groups of 7 and 7 are crystallographic (i.e.,
contain a normal subgroup of finite index consisting of translations); the resulting list
of possible X’s is a variation on “Thurston’s list” of postcritically finite non-hyperbolic
dynamical systems; c¢f. [DH93]. (The baby examples in the previous section are in
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