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Alexandru Buium

Abstract. — Ordinary differential equations have an arithmetic analogue in which

functions are replaced by integer numbers and the derivative operator is replaced by

a Fermat quotient operator. This paper reviews the basics of this theory and explains

some of the applications to the invariant theory of correspondences.

Résumé(Correspondances, quotients de Fermat et uniformisation). — Les équations dif-

férentielles ordinaires possèdent un analogue arithmétique où les fonctions et leurs

dérivées sont remplacées par des nombres entiers et leurs quotients de Fermat. Cet

article présente les principes de cette théorie et quelques applications à la théorie des

invariants pour les correspondances.

This paper represents a brief overview of some of the author’s work on arithmetic

differential algebra and its applications to the invariant theory of correspondences.

Arithmetic differential algebra is an arithmetic analogue of the Ritt-Kolchin differ-

ential algebra [Rit50], [Kol73] in which derivations are replaced by Fermat quotient

operators. The main foundational results and first applications of arithmetic differ-

ential algebra are contained in [Bui95], [Bui96], [Bui00]. A further study of these

matters is contained in [Bar03], [Bui03], [Bui04], [Bui02]. A program outlining ap-

plications to the invariant theory of correspondences was sketched in the last 2 pages

of [Bui02]. The present paper reports on recent progress along this program. For a

detailed exposition of the results announced here we refer to the research monograph

[Bui05].

The paper closely follows the talk presented at the Luminy conference. The author

would like to thank the organizers of the conference for their support and encourage-

ment. This research was supported in part by NSF Grant 0096946.
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80 A. BUIUM

1. Motivation

Let X and X̃ be two complex algebraic curves and σ = (σ1, σ2) a pair of dominant

maps:

(1) X
σ1←− X̃

σ2−→ X.

Assume X is irreducible. Denote by C(X) the field of rational functions on X and

by

(2) C(X)σ := {f ∈ C(X) | f ◦ σ1 = f ◦ σ2}

the field of invariants of the correspondence σ. It is a fact that, “most of the times”,

there are “no non-constant invariants”:

(3) C(X)σ = C.

There are, of course, exceptions to this: the whole of the classical Galois theory of

curves is an exception. Here, when we say Galois theory, we mean the case when

σ2 : X̃ := X × G → X is a finite group action and σ1 is the first projection; in this

case, of course, we have

C(X)σ = C(X)G 6= C.

In this paper we would like to view Galois theory as an exceptional (and “well un-

derstood”) situation. On the contrary, the fact that the equality (3) holds “most of

the times” will be viewed as a basic pathology in algebraic geometry that we would

like to address. Indeed equality (3) says in particular that the “categorical quotient”

X/σ in the category of algebraic varieties reduces to a point and, hence, the quotient

map X → X/σ cannot be viewed, in any reasonable sense, as a Galois cover. Our

aim in this paper is to show how one can construct a “larger geometry” (referred to

as δ−geometry) in which X/σ ceases, in many interesting situations, to reduce to a

point; in this new geometry the quotient map X → X/σ will sometimes “looks like”

a Galois cover.

Our theory will be p−adic (rather than over the complex numbers C). The ba-

sic ring of our theory will be R = Ẑurp , the completion of the maximum unramified

extension of the p−adic integers; recall that this is the unique complete discrete valu-

ation ring with maximal ideal generated by p and residue field equal to the algebraic

closure Fap of the prime field Fp. The ring R has a unique automorphism φ lifting

the Frobenius on R/pR. We can therefore consider the Fermat quotient operator

δ : R→ R,

(4) δx =
φ(x) − xp

p
.

We will view δ as an arithmetic analogue of a derivation; our δ−geometry will then

be an arithmetic analogue of the Ritt-Kolchin differential algebraic geometry [Rit50],

[Kol73], [Bui94].

SÉMINAIRES & CONGRÈS 13
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2. Toy examples

To explain what we have in mind we begin by looking at an easy example. Assume,

in what follows, that X = X̃ = A1 is the affine line over R. We assume σ1 = id and

σ2(x) = x2. Define the map ψ : R→ R,

(5) ψ(x) =

∞
∑

i=1

(−1)i+1 p
i−1

i

(

δx

xp

)i

,

and consider the (partially defined) map f : R→ R,

(6) f(x) =
φ ◦ ψ

ψ
(x) = ψp−1(x) + p

δψ

ψ
(x);

note that f is not defined precisely at the roots of 1. It is trivial to check that

ψ(x2) = 2 · ψ(x)

and, hence,

f(x2) = f(x),

so f is an invariant for σ. Note that one can write

(7) f(x) =
F (x, δx, δ2x, x−1)

G(x, δx, x−1)
,

with F,G restricted power series in 4 respectively 3 variables. This example shows

that, although no invariants for σ exist in algebraic geometry, invariants as in Equa-

tion 7 (which we shall refer to as δ−invariants) may very well exist; this suggests to

“adjoin” δ to usual algebraic geometry and this is exactly what we shall soon do.

Before proceeding to the general case, let us explore the above example in further

detail. Once we discovered the invariant η0 := φ◦ψ
ψ

it is easy to come up with more

invariants namely ηi := δi ◦ η0. Set η̄i := ηi mod p. Moreover set x′ = δx, x′′ = δ2x,

e.t.c. One can prove that the field extension

(8) Fap(x, η̄0, η̄1, η̄2, ...) ⊂ Fap(x, x
′, x′′, x′′′, ...)

is Galois with Galois group Z×
p . The left hand side of the above extension (8) can be

viewed as the compositum of Fap(x) (the “field of rational functions on X = A1 mod p

in the old algebraic geometry”) and the field Fap(η̄0, η̄1, η̄2, ...) (which should be viewed

as the “field of rational functions mod p on X/σ in the new geometry). The right

hand side of the extension (8) can be viewed as the “field of rational functions mod p

on X in the new geometry”. As we will see the above picture can be generalized.

Let us further postpone our discussion of the general case by looking at yet another

example. Assume in what follows that X = X̃ = A1 over R and σ1 = id, σ2(x) =

x2−2 (the Chebyshev quadratic polynomial). Again one can show that“δ−invariants”
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exist, more precisely there exist restricted power series F,G in 4 and 3 variables

respectively such that

(9) f(x) =
F (x, δx, δ2x, (x2 − 4)−1)

G(x, δx, (x2 − 4)−1)

satisfies

f(x2 − 2) = f(x).

Also there is Galois computation similar to that in the previous example.

A natural question is whether the existence of “δ−invariants” in the above 2 ex-

amples generalizes to the situation when X = X̃ = A1, σ1 = id, σ2(x) = x2 + c,

c ∈ Z. The answer to this question is NO! (Cf. [BZ05] for a precise statement and

for related conjectures.)

The next natural question is: what do x 7→ x2 and x 7→ x2 − 2 have in common

that does not hold for a general quadratic map x 7→ x2 + c? One possible answer is

that the maps corresponding to c = 0 and c = −2 possess, over the complex numbers,

analytic uniformizations in the sense that one has commutative diagrams

C
2z
→ C

π1 ↓ ↓ π1

C× z2

→ C×

,

C
2z
→ C

π2 ↓ ↓ π2

C
z2−2
→ C,

where π1(z) = e2πiz and π2(z) = e2πiz + e−2πiz respectively.

So the next question one is tempted to ask is: are there other correspondences ad-

mitting similar “analytic uniformizations”? The answer to this question is: PLENTY!

And they can be all classified.

The final question one would then ask would be: Do “δ−invariants” exist for such

“uniformizable” correspondences? Again the answer to the above question tends to

be YES and the aim of this paper is to explain the theory that provides this answer.

3. Outline of the theory

To explain our main ideas it is convenient to start with an arbitrary category C;

what we have in mind is a category of spaces in some geometry. By a correspondence

we will understand a pair X = (X,σ) where X is an object in C and σ is a pair of

morphisms in C as in Equation (1). A categorical quotient for X will mean a pair

(Y, π) where π : X → Y is a morphism in C such that π ◦ σ1 = π ◦ σ2 and with the

property that for any other pair (Y ′, π′) with π′ : X → Y ′, π′ ◦ σ1 = π′ ◦ σ2 there

exists a unique ε : Y → Y ′ such that ε ◦ π = π′. We write Y = X/σ. (Categorical

quotients are sometimes called co-equalizers.) We will also give, in each concrete

example, a class of objects of C which we call trivial. For instance, if C is the category

of algebraic varieties, the trivial objects will be declared to be the points. If X is a

correspondence between curves, possessing an infinite orbit (i.e., a sequence of distinct
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points Q1, Q2, ... ∈ X̃ such that σ2(Qi) = σ1(Qi+1) for i ≥ 1), then clearly X/σ is

trivial. To remedy this situation we will proceed as follows.

1) For each p we will“adjoin”the Fermat quotient operator δ = δp to usual algebraic

geometry; this will lead us to consider a category Cδ that underlies what we shall refer

to as “δ−geometry”.

2) For any correspondence XO in the category of smooth curves over the ring of

S−integers O of a number field we will consider the correspondences X℘ and XC

deduced by base change via O ⊂ Ô℘ = Ẑurp and O ⊂ C, where ℘ runs through

the set of unramified places outside S. To each X℘ = (X℘, σ℘) we will associate a

correspondence Xδ = (Xδ, σδ) in Cδ, where δ = δp.

3) We will formulate a conjecture (and state results along this conjecture) essen-

tially asserting that if XC has an infinite orbit then Xδ/σδ is non-trivial in Cδ for

almost all places ℘ if and only if XC admits an analytic uniformization (in a sense to

be explained below).

The rest of the paper is devoted to explaining the above 3 steps.

4. Uniformization

We begin by explaining the concept of analytic uniformization for correspondences

on complex algebraic curves. Let X = (X,σ) be a correspondence in the category of

complex algebraic curves. We assume X, X̃ are non-singular connected and σ1 and

σ2 are dominant. We say that X has an analytic uniformization if one can find a

diagram of Riemann surfaces

S
τ1←− S

τ2−→ S

π ↓ ↓ π̃ ↓ π

X ′ σ′

1←− X̃ ′ σ′

2−→ X ′

u ↑ ↑ ũ ↑ u

X
σ1←− X̃

σ2−→ X

with S a simply connected Riemann surface, τ1, τ2 automorphisms of S, π, π̃ Galois

covers of degree ≤ ∞, and u, ũ inclusions with X ′\X and X̃ ′\X̃ finite sets containing

the ramification locus of π and π̃ respectively. It is easy to “classify” all correspon-

dences which admit an analytic uniformization and possess an infinite orbit. The

details of the classification are tedious and will be skipped here; we content ourselves

with a few remarks. There are 3 cases: the spherical, flat and hyperbolic case accord-

ing as S is CP1, C, or H (the upper half plane) respectively. In the spherical case

everything boils down to the (well known) classification of finite groups of automor-

phisms of CP1. In the flat case the Galois groups of π and π̃ are crystallographic (i.e.,

contain a normal subgroup of finite index consisting of translations); the resulting list

of possible X’s is a variation on“Thurston’s list”of postcritically finite non-hyperbolic

dynamical systems; cf. [DH93]. (The baby examples in the previous section are in
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