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SIX RESULTS ON PAINLEVÉ VI

by

Philip Boalch

Abstract. — After recalling some of the geometry of the sixth Painlevé equation,
we describe how the Okamoto symmetries arise naturally from symmetries of
Schlesinger’s equations and summarise the classification of the Platonic Painlevé six
solutions.

Résumé(Six résultats sur Painlevé VI). — Après quelques rappels sur la géométrie de
la sixième équation de Painlevé, nous expliquons comment les symétries d’Okamoto
résultent de façon naturelle des symétries des équations de Schlesinger et comment
elles conduisent à la classification des solutions platoniques de la sixième équation de
Painlevé.

1. Background

The Painlevé VI equation is a second order nonlinear differential equation which

governs the isomonodromic deformations of linear systems of Fuchsian differential

equations of the form

(1)
d

dz
−

(
A1

z
+

A2

z − t
+

A3

z − 1

)
, Ai ∈ g := sl2(C)

as the second pole position t varies in B := P1\{0, 1,∞}. (The general case —varying

all four pole positions— reduces to this case using automorphisms of P1.)

By ‘isomonodromic deformation’ one means that as t varies the linear monodromy

representation

ρ : π1(P
1 \ {0, t, 1,∞})→ SL2(C)

of (1) does not change (up to overall conjugation). Of course, this is not quite well-

defined since as t varies one is taking fundamental groups of different four-punctured
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spheres, and it is crucial to understand this in order to understand the global be-

haviour (nonlinear monodromy) of Painlevé VI solutions. For small changes of t there

are canonical isomorphisms between the fundamental groups: if t1, t2 are in some disk

∆ ⊂ B in the three-punctured sphere then one has a canonical isomorphism

π1(P
1 \ {0, t1, 1,∞}) ∼= π1(P

1 \ {0, t2, 1,∞})
coming from the homotopy equivalences

P
1 \ {0, t1, 1,∞} ↪→ {(t, z) ∈ ∆× P

1
∣∣z 6= 0, t, 1,∞}←↩ P

1 \ {0, t2, 1,∞}.
(Here we view the central space as a family of four-punctured spheres parameterised

by t ∈ ∆ and are simply saying that it contracts onto any of its fibres.)

In turn, by taking the space of such ρ’s, i.e., the space of conjugacy classes of SL2(C)

representations of the above fundamental groups, one obtains canonical isomorphisms:

Hom(π1(P
1 \ {0, t1, 1,∞}), G)/G ∼= Hom(π1(P

1 \ {0, t2, 1,∞}), G)/G

where G = SL2(C). Geometrically this says that the spaces of representations

M̃t := Hom(π1(P
1 \ {0, t, 1,∞}), G)/G

constitute a ‘local system of varieties’ parameterised by t ∈ B. In other words, the

natural fibration

M̃ := {(t, ρ)
∣∣ t ∈ B, ρ ∈ M̃t }−→B

over B (whose fibre over t is M̃t) has a natural flat (Ehresmann) connection on it.

Moreover, this connection is complete: over any disk in B any two fibres have a

canonical identification.

To get from here to Painlevé VI (PVI) one pulls back the connection on the fibre

bundle M̃ along the Riemann–Hilbert map and writes down the resulting connection

in certain coordinates. Consequently we see immediately that the monodromy of

PVI solutions corresponds (under the Riemann–Hilbert map) to the monodromy of

the connection on the fibre bundle M̃ . However, since this connection is flat and

complete, its monodromy is given by the action of the fundamental group of the base

π1(B) ∼= F2 (the free group on 2 generators) on a fibre M̃t ⊂ M̃ , which can easily be

written down explicitly.

Before describing this in more detail let us first restrict to linear representations ρ

having local monodromies in fixed conjugacy classes:

Mt := {ρ ∈ M̃t

∣∣ ρ(γi) ∈ Ci, i = 1, 2, 3, 4} ⊂ M̃t

where Ci ⊂ G are four chosen conjugacy classes, and γi is a simple positive loop

in P1 \ {0, t, 1,∞} around ai, where (a1, a2, a3, a4) = (0, t, 1,∞) are the four pole

positions. (By convention we assume the loop γ4 · · · γ1 is contractible, and note that

Mt is two-dimensional in general.) The connection on M̃ restricts to a (complete flat

Ehresmann) connection on the fibration

M := {(t, ρ)
∣∣ t ∈ B, ρ ∈Mt } → B
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whose fibre over t ∈ B is Mt. The action of F2 = π1(B) on the fibre Mt (giving

the monodromy of the connection on the bundle M and thus the monodromy of

the corresponding PVI solution) is given explicitly as follows. Let w1, w2 denote the

generators of F2, thought of as simple positive loops in B based at 1/2 encircling 0

(resp. 1) once. Then, wi acts on ρ ∈ Mt as the square of ωi where ωi acts by fixing

Mj for j 6= i, i + 1, (1 6 j 6 4) and

(2) ωi(Mi, Mi+1) = (Mi+1, Mi+1MiM
−1
i+1)

where Mj = ρ(γj) ∈ G is the jth monodromy matrix. Indeed, F2 can naturally be

identified with the pure mapping class group of the four-punctured sphere and this

action comes from its natural action (by push-forward of loops) as outer automor-

phisms of π1(P
1 \ {0, t, 1,∞}), cf. [5]. (The geometric origins of this action in the

context of isomonodromy can be traced back at least to Malgrange’s work [28] on the

global properties of the Schlesinger equations.)

On the other side of the Riemann–Hilbert correspondence we may choose some

adjoint orbits Oi ⊂ g := sl2(C) such that

exp(2π
√
−1Oi) = Ci

and construct the space of residues:

O := O1 × · · · × O4//G =
{

(A1, . . . A4) ∈ O1 × · · · × O4

∣∣ ∑
Ai = 0

}
/G

where, on the right-hand side, G is acting by diagonal conjugation: g · (A1, . . . A4) =

(gA1g
−1, . . . , gA4g

−1). This space O is also two-dimensional in general. To construct

a Fuchsian system (1) out of such a four-tuple of residues one must also choose a value

of t, so the total space of linear connections we are interested in is:

M∗ := O ×B

and we think of a point (A, t) ∈ M∗, where A = (A1, . . . , A4), as representing the

linear connection

∇ = d−Adz, where A =

3∑

1

Ai

z − ai
, (a1, a2, a3, a4) = (0, t, 1,∞)

or equivalently the Fuchsian system (1).

If we think of M∗ as being a (trivial) fibre bundle over B with fibre O then,

provided the residues are sufficiently generic (e.g., if no eigenvalues differ by positive

integers), the Riemann–Hilbert map (taking linear connections to their monodromy

representations) gives a bundle map

ν :M∗ →M.

Written like this the Riemann–Hilbert map ν is a holomorphic map (which is in fact

injective if the eigenvalues are also nonzero cf. e.g., [25, Proposition 2.5] ). We may
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then pull-back (restrict) the nonlinear connection on M to give a nonlinear connection

on the bundle M∗, which we will refer to as the isomonodromy connection.

The remarkable fact is that even though the Riemann–Hilbert map is transcenden-

tal, the connection one obtains in this way is algebraic. Indeed Schlesinger [31] showed

that locally horizontal sections A(t) : B →M∗ are given (up to overall conjugation)

by solutions to the Schlesinger equations:

(3)
dA1

dt
=

[A2, A1]

t
,

dA2

dt
=

[A1, A2]

t
+

[A3, A2]

t− 1
,

dA3

dt
=

[A2, A3]

t− 1

which are (nonlinear) algebraic differential equations.

To get from the Schlesinger equations to PVI one proceeds as follows (cf. [24,

Appendix C]). Label the eigenvalues of Ai by ±θi/2 (thus choosing an order of the

eigenvalues or equivalently, if the reader prefers, a quasi-parabolic structure at each

singularity), and suppose A4 is diagonalisable. Conjugate the system so that

A4 = −(A1 + A2 + A3) = diag(θ4,−θ4)/2

and note that Schlesinger’s equations preserve A4. Since the top-right matrix entry

of A4 is zero, the top-right matrix entry of

(4) z(z − 1)(z − t)

3∑

1

Ai

z − ai

is a degree one polynomial in z. Define y(t) to be the position of its unique zero on

the complex z line.

Theorem -1(see[24]). — If A(t) satisfies the Schlesinger equations then y(t) satisfies

PVI:

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

2 t2(t− 1)2

(
(θ4 − 1)2 − θ2

1 t

y2
+

θ2
3(t− 1)

(y − 1)2
+

(1− θ2
2)t(t− 1)

(y − t)2

)
.

Phrased differently, for each fixed t, the prescription above defines a function y on

O, which makes up half of a system of (canonical) coordinates, defined on a dense

open subset. A conjugate coordinate x can be explicitly defined and one can write the

isomonodromy connection explicitly in the coordinates x, y on O to obtain a coupled

system of first-order nonlinear equations for x(t), y(t) (see [24], where our x is denoted

z̃). Then, eliminating x yields the second order equation PVI for y. (One consequence

is that if y solves PVI there is a direct relation between x and the derivative y′, as in

equation (6) below.)

In the remainder of this article the main aims are to:

•1) Explain how Okamoto’s affine F4 Weyl group symmetries of PVI arise from

natural symmetries of Schlesinger equations, and
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•2) Describe the classification of the Platonic solutions to PVI (i.e., those solutions

having linear monodromy group equal to the symmetry group of a Platonic

solid).

The key step for •1) (which also led us to •2)) is to use a different realisation of PVI,

as controlling isomonodromic deformations of certain 3 × 3 Fuchsian systems. Note

that these results have been written down elsewhere, although the explicit formulae of

Remarks 6 and 7 are new and constitute a direct verification of the main results about

the 3×3 Fuchsian realisation. Note also that the construction of the Platonic solutions

has evolved rapidly recently (e.g., since the author’s talk in Angers and since the first

version of [13] appeared). For example, there are now simple explicit formulae for all

the Platonic solutions (something that we had not imagined was possible for a long

time(1)).

Remark 1. — Let us briefly mention some other possible directions that will not be

discussed further here. Firstly, by describing PVI in this way the author is trying

to emphasise that PVI is the explicit form of the simplest non-abelian Gauss–Manin

connection, in the sense of Simpson [34], thereby putting PVI in a very general context

(propounded further in [9, section 7], especially p. 192). For example, suppose we

replace the above family of four-punctured spheres (over B) by a family of projective

varieties X over a base S, and choose a complex reductive group G. Then (by the

same argument as above), one again has a local system of varieties

MB = Hom(π1(Xs), G)/G

over S and one can pull-back along the Riemann–Hilbert map to obtain a flat con-

nection on the corresponding family MDR of moduli spaces of connections. Simpson

proves this connection is again algebraic, and calls it the non-abelian Gauss–Manin

connection, since MB and MDR are two realisations of the first non-abelian cohomol-

ogy group H1(Xs, G), the Betti and De Rham realisations.

Also, much of the structure found in the regular (-singular) case may be generalised

to the irregular case. For example, as Jimbo–Miwa–Ueno [25] showed, one can also

consider isomonodromic deformations of (generic) irregular connections on a Riemann

surface and obtain explicit deformation equations in the case of P
1. This can also be

described in terms of nonlinear connections on moduli spaces and there are natural

symplectic structures on the moduli spaces which are preserved by the connections

[9, 7]. Perhaps most interestingly, one obtains extra deformation parameters in the

irregular case (one may vary the ‘irregular type’ of the linear connections as well as

the moduli of the punctured curve). These extra deformation parameters turn out to

be related to quantum Weyl groups [10].

(1)Mainly because the 18 branch genus one icosahedral solution of [18] took 10 pages to write down

and we knew quite early on that the largest icosahedral solution had genus seven and 72 branches.
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