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DYNAMICS OF THE SIXTH PAINLEVÉ EQUATION

by

Michi-aki Inaba, Katsunori Iwasaki & Masa-Hiko Saito

Abstract. — The sixth Painlevé equation is hiding extremely rich geometric structures
behind its outward appearance. In this article, we give a complete picture of its
dynamical nature based on the Riemann-Hilbert approach recently developed by the
authors and using various techniques from algebraic geometry.

A large part of the contents can be extended to Garnier systems, while this article
is restricted to the original sixth Painlevé equation.

Résumé(Dynamique de la sixième équation de Painlevé). —Malgré une apparente simpli-
cité, l’équation de Painlevé VI cache des structures géométriques très riches. Nous en
décrivons les aspects dynamiques en nous appuyant sur l’approche de type Riemann-
Hilbert récemment développée par les auteurs et en utilisant différentes techniques
issues de la géométrie algébrique.

Une grande partie de ces résultats peut être étendue aux systèmes de Garnier.
Toutefois, dans cet article, nous nous limitons au cas de l’équation de Painlevé VI.

1. Introduction

The sixth Painlevé equation PVI = PVI(κ) is among the six kinds of differential

equations that were discovered by Painlevé [65] and his student Gambier [18] around

the turn of the twentieth century. It is a second-order nonlinear ordinary differential
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equation with an independent variable x ∈ P1 − {0, 1,∞} and an unknown function

q = q(x),
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(1)

depending on parameters κ = (κ0, κ1, κ2, κ3, κ4) in a 4-dimensional affine space

K = {κ = (κ0, κ1, κ2, κ3, κ4) ∈ C
5 : 2κ0 + κ1 + κ2 + κ3 + κ4 = 1}. (2)

This highly nonlinear and seemingly rather ugly equation is only a small visible

part of a more substantial entity. The large invisible part has extremely rich geometric

structures that are related to symplectic geometry, moduli spaces of stable parabolic

connections, moduli spaces of representations of a fundamental group, Riemann-

Hilbert correspondence, geometry of cubic surfaces, braid and modular groups, simple

isolated singularities and their resolutions of singularities, affine Weyl groups, discrete

dynamical systems, and so on. The aim of this survey article is to discuss various as-

pects of these illuminating structures, giving a complete picture of the sixth Painlevé

equation.

Among other features, Painlevé equation is primarily a dynamical system and a

dynamical system in general is characterized by two aspects: laws and phenomena.

Mathematically, laws refer to equations that govern the dynamics, symmetries of the

system, etc., while phenomena refer to solutions of the equations, (global) behaviors

of trajectories, etc. These two aspects often show a sharp contrast. For example, in

classical mechanics, the simple laws of Newton create extremely rich and complicated

phenomena. The Painlevé dynamics is also in this case, being algebraic in its laws

and transcendental in its phenomena (see Table 1).

aspect contents nature

laws equations, symmetry, ... algebraic

phenomena solutions, trajectories, ... transcendental

Table 1. Two aspects of Painlevé equation

For comparison, we should remark that there exists an interesting dynamics whose

laws are already transcendental, like a dynamics on a K3 surface recently explored by

McMullen [49], who showed that the existence of Siegel disks implies the transcen-

dence of the K3 surface.

Generally speaking, the two principal approaches to dynamical systems are per-

haps:

(L) Lyapunov’s methods, (C) conjugacy methods.
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In Lyapunov’s methods (L), we examine, control, or confine the behaviors of trajec-

tories by estimating suitable functions called “Lyapunov functions”. Main tools of

the methods are estimations by inequalities. On the other hand, in the conjugacy

methods (C), we try to find a “conjugacy map” that converts the difficult dynamical

system we want to study to a more tractable one, to extract informations from the

latter, and to send feedback to the former (see §2.2 for more details). Our approach

to the Painlevé equation, which we call the Riemann-Hilbert approach, falls into this

category (C), making use of Riemann-Hilbert correspondence as a conjugacy map

between Painlevé flow and isomonodromic flow.

Of course, the Riemann-Hilbert approach is closely related to the isomonodromic

approach represented by the classical works of Fuchs [17], Schlesinger [71], Garnier

[20], Jimbo, Miwa and Ueno [37, 38] and others, but differs from the latter in its

definitive employment of the method of conjugacy maps and in its extensive use of a

complete solution to the Riemann-Hilbert problem. The Riemann-Hilbert approach a

priori has a global nature once Riemann-Hilbert correspondence is formulated appro-

priately, while the isomonodromic approach mostly stands on the infinitesimal point

of view and pays little attention to the target space of Riemann-Hilbert correspon-

dence, namely, moduli space of monodromy representations. In the Riemann-Hilbert

appraoch, we consciously distinguish the Painlevé flow on the moduli space of stable

parabolic connections and the isomonodromic flow on the moduli space of monodromy

representations, and build a bridge between them via the Riemann-Hilbert correspon-

dence.

This approach has been explored by Iwasaki [31, 32, 33, 34], Hitchin [24], Kawai

[40, 41], Boalch [5, 6, 7], Dubrovin and Mazzocco [14] and others. Recently it was

thoroughly developed by Inaba, Iwasaki and Saito [29, 28]. The exposition of this

article is largely based on the contents of the last papers. We focus our attention on

the original case of PVI with the aim of presenting, for the most basic model, those

materials which can be expected to be universal throughout various generalizations.

A large part of the contents is extended to Garnier systems, a several-variable version

of PVI; see [29].

In addtion to the general methods represented by approaches (L) and (C), which are

conceivable in general situations, there are also various particular methods applicable

to various particular dynamical systems. For example, for the class of dynamical

systems that are called completely integrable systems, there exist

(CI) methods for complete integration,

which are characterized by such keywords as τ -functions, bilnear equations, Lax pairs,

separations of variables, combinatorics and representation theory, etc. Painlevé equa-

tions are usually thought of as a member of this class and many works have been done

from this point of view. See Conte [10], Noumi [56] and the references therein. But

we shall not touch on this aspect in this article. Among other things, we wish to lay
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a sound foundation on the sixth Painlevé equation to such an extent that it can be

a basis for the investigations into the transcendental nature of PVI. To do so, many

things should be done, even within the general framework of dynamical systems, be-

fore entering into those subjects which are particular to integrable systems. Therefore

the integrable aspects should be discussed later and elsewhere.

Lyapunov-type approaches to Painlevé equations will not at all be discussed in this

article. There have been long traditions as well as recent developments of establishing

Painlevé property by these methods. We refer to Painlevé [65], Hukuhara [25] (see

Okamoto and Takano [64] for a part of these unpublished lectures), Joshi and Kruskal

[39], Steinmetz [76], Shimomura [72], Iwasaki, Kimura, Shimomura and Yoshida [35],

Gromak, Laine and Shimomura [22] and the references therein.

The organization of this article is as follows: In Section 2 we introduce a general

formalism of dynamical systems and cast PVI into this framework. We present the

Guiding Diagram that encodes major dynamical natures of PVI. Section 3 is devoted

to the construction of moduli spaces of stable parabolic connections, which, in the

dynamical context, means the construction of phase spaces of PVI. In Section 4,

after setting up moduli spaces of monodromy representations, we formulate Riemann-

Hilbert correspondence, RH, and settle Riemann-Hilbert problems in suitable ways. In

the dynamical context, theses parts correspond to the construction of conjugacy maps.

In Section 5 we formulate isomonodromic flows FIMF and Painlevé flows FPVI in such

a manner that RH yields analytic conjugacy from FPVI to FIMF. Section 6 is devoted

to the construction of a family of affine cubic surfaces, which enables us to describe

all the previous constructions more explicitly. In Section 7 we give a characterization

of Bäcklund transformations, namely, the symmetries of PVI, in terms of Riemann-

Hilbert correspondence. In Section 8 we describe the nonlinear monodromy or the

Poincaré return map of PVI that extracts the global nature of trajectories of PVI. In

Section 9 we characterize the classical components of PVI, called the Riccati flows,

in terms of singularities on cubic surfaces and their resolutions of singularities. In

Section 10 we construct canonical coordinate systems of moduli spaces (phase spaces)

which make it possible to write down the Painlevé dynamics explicitly. This article

is closed with a brief summary, especially with the Closing Diagram, in Section 11.

2. Painlevé Equation as a Dynamical System

A complete picture of the sixth Painlevé equation is most clearly described in the

framework of dynamical systems, or, more specifically as a time-dependent Hamilto-

nian system with Painlevé property. So we begin by establishing a general formalism

of dynamical systems, based on which we shall develop our whole story.

SÉMINAIRES & CONGRÈS 14
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Figure 1. Dynamical system with Painlevé property

2.1. General Formalism of Dynamical Systems

Definition 2.1(Time-Dependent Dynamical System). — A time-dependent dynamical

system (M,F) is a fibration π : M → T of complex manifolds together with a

complex foliation F on M that is transverse to each fiber Mt = π−1(t), t ∈ T . The

total space M is referred to as the phase space, while the base space T is called the

space of time-variables. Moreover, the fiber Mt is called the space of initial conditions

at time t.

The space of initial conditions becomes a meaningful concept if the dynamical

system enjoys Painlevé property. It is this property that makes it possible to think of

Poincaré return maps or the nonlinear monodromy, which is the discrete dynamical

system on a space of initial conditions that represents the global nature of a continuous

dynamical system.

Definition 2.2(Geometric Painlevé Property). — We say that a dynamical system

(M,F) has geometric Painlevé property (GPP) if for any path γ in T and any point

p ∈ Mt, where t is the initial point of γ, there exists a unique F -horizontal lift γ̃p of

γ with initial point at p (see Figure 1). Here a curve in M is said to be F -horizontal

if it lies in a leaf of F .
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