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SPECIAL POLYNOMIALS ASSOCIATED WITH RATIONAL

AND ALGEBRAIC SOLUTIONS OF THE PAINLEVÉ

EQUATIONS

by

Peter A. Clarkson

Abstract. — Rational solutions of the second, third and fourth Painlevé equations
(PII–PIV) can be expressed in terms of logarithmic derivatives of special polyno-
mials that are defined through coupled second order, bilinear differential-difference
equations which are equivalent to the Toda equation.

In this paper the structure of the roots of these special polynomials, and the spe-
cial polynomials associated with algebraic solutions of the third and fifth Painlevé
equations, is studied and it is shown that these have an intriguing, highly symmet-
ric and regular structure. Further, using the Hamiltonian theory for PII–PIV, it is
shown that all these special polynomials, which are defined by differential-difference
equations, also satisfy fourth order, bilinear ordinary differential equations.

Résumé(Polynômes spéciaux associés aux solutions rationnelles ou algébriques des équations
de Painlevé)

On peut exprimer les solutions rationnelles des équations PII, PIII et PIV en
fonction des dérivées logarithmiques de polynômes spéciaux définis par des équations
différences-différentielles bilinéaires d’ordre deux couplées et équivalentes à l’équation
de Toda.

Dans cet article nous étudions la configuration des racines de ces polynômes spé-
ciaux et des polynômes spéciaux associés aux solutions algébriques des équations de
Painlevé PIII et PV. Nous mettons en évidence une structure étonnante, fortement
symétrique et régulière. En outre, appliquant la théorie hamiltonienne à PII, PIII

et PIV, nous montrons que tous ces polynômes spéciaux, définis par des équations
différences-différentielles, satisfont aussi à des équations différentielles ordinaires bi-

linéaires d’ordre 4.
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c© Séminaires et Congrès 14, SMF 2006



22 P.A. CLARKSON

1. Introduction

In this paper our interest is in rational solutions of the second, third and fourth

Painlevé equations (PII–PIV)
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where ′ ≡ d/dz and α, β, γ and δ are arbitrary constants and algebraic solutions of

PIII and the fifth Painlevé equation (PV)
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The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and

their colleagues whilst studying which second order ordinary differential equations of

the form

(1.5) w′′ = F (z, w, w′) ,

where F is rational in w′ and w and analytic in z, have the property that the solutions

have no movable branch points, i.e. the locations of multi-valued singularities of any of

the solutions are independent of the particular solution chosen and so are dependent

only on the equation; this is now known as the Painlevé property (cf. [34]). The

Painlevé equations can be thought of as nonlinear analogues of the classical special

functions. Indeed Iwasaki, Kimura, Shimomura and Yoshida [35] characterize the

Painlevé equations as “the most important nonlinear ordinary differential equations”

and state that “many specialists believe that during the twenty-first century the Pain-

levé functions will become new members of the community of special functions” (see

also [14, 75]). The general solutions of the Painlevé equations are transcendental in

the sense that they cannot be expressed in terms of known elementary functions and

so require the introduction of a new transcendental function to describe their solution

(cf. [34, 75]).

Although first discovered from strictly mathematical considerations, the Painlevé

equations have arisen in a variety of important physical applications including sta-

tistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field

theory, general relativity, nonlinear optics and fibre optics. Further the Painlevé equa-

tions have attracted much interest since they also arise as reductions of the soliton

equations which are solvable by inverse scattering (cf. [1], and references therein, for

further details).

Vorob’ev [79] and Yablonskii [80] expressed the rational solutions of PII (1.1)

in terms of the logarithmic derivative of certain special polynomials which are now
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known as the Yablonskii–Vorob’ev polynomials (see §2 below). Okamoto [60] derived

analogous special polynomials related to some of the rational solutions of PIV, these

polynomials are now known as the Okamoto polynomials (see §4.2 below), which

have been generalised by Noumi and Yamada [58] so that all rational solutions of

PIV can be expressed in terms of the logarithmic derivative of special polynomials

(see §4.3 below). Umemura [77] derived associated analogous special polynomials

with certain rational and algebraic solutions of PIII, PV and PVI which have similar

properties to the Yablonskii–Vorob’ev polynomials and the Okamoto polynomials (see

also [56, 81]). Subsequently there have been several studies of special polynomials

associated with the rational solutions of PII [26, 38, 40, 68], the rational and alge-

braic solutions of PIII [39, 59], the rational solutions of PIV [26, 41, 58], the rational

solutions of PV [51, 57] and the algebraic solutions of PVI [45, 44, 50, 69, 70]. Many

of these papers are concerned with the combinatorial structure and determinant rep-

resentation of the polynomials, often related to the Hamiltonian structure and affine

Weyl symmetries of the Painlevé equations. Typically these polynomials arise as the

“τ -functions” for special solutions of the Painlevé equations and are generated through

nonlinear, three-term recurrence relations which are Toda-type equations that arise

from the associated Bäcklund transformations of the Painlevé equations. Additionally

the coefficients of these special polynomials have some interesting, indeed somewhat

mysterious, combinatorial properties (cf. [56, 75, 77]).

Clarkson and Mansfield [22] investigated the locations of the zeroes of the

Yablonskii–Vorob’ev polynomials in the complex plane and showed that these zeroes

have a very regular, approximately triangular structure (see also [15]). An earlier

study of the distribution of the zeroes of the Yablonskii–Vorob’ev polynomials is

given by Kametaka, Noda, Fukui, and Hirano [42] — see also [35, p. 255, p. 339].

The structure of the zeroes of the polynomials associated with rational and algebraic

solutions of PIII is studied in [17], which essentially also have an approximately

triangular structure, and with rational solutions of PIV in [16], which have an ap-

proximate rectangular and combinations of approximate rectangular and triangular

structures. The term “approximate” is used since the patterns are not exact triangles

and rectangles since the zeroes lie on arcs rather than straight lines.

In this paper we review the studies of special polynomials associated with rational

solutions of PII, PIII and PIV in §§2–4, respectively, and special polynomials associ-

ated with algebraic solutions of PIII and PV in §5 and §6, respectively. Further we

discuss the rational solutions of the Hamiltonian systems associated with PII, PIII and

PIV, respectively. In particular, it is shown that the associated special polynomials,

which are defined by differential-difference equations, also satisfy fourth order, bilinear

ordinary differential equations. This is analogous to classical orthogonal polynomi-

als, such as Hermite, Laguerre and Jacobi polynomials, which satisfy linear ordinary
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differential, difference and differential-difference equations (cf. [3, 7, 71]), and so pro-

vides further evidence that the Painlevé equations are nonlinear special functions. In

§7 we discuss the interlacing of the roots of these special polynomials in the complex

plane. In §8 we discuss our results and pose some open questions.

2. Special Polynomials Associated with Rational Solutions of PII

Rational solutions of PII, for α = n ∈ Z, can be expressed in terms of the log-

arithmic derivative of special polynomials which are defined through a second or-

der, bilinear differential-difference equation, see equation (2.2) below. These special

polynomials were introduced by Vorob’ev [79] and Yablonskii [80], now known as

the Yablonskii–Vorob’ev polynomials, which are given in the following theorem (see

also [26, 68, 75, 78]).

Theorem 2.1. — Rational solutions of PII exist if and only if α = n ∈ Z, which are

unique, and have the form

(2.1) wn = w(z; n) =
d

dz

{
ln

[
Qn−1(z)

Qn(z)

]}
,

for n ≥ 1, where the polynomials Qn(z) satisfy the differential-difference equation

(2.2) Qn+1Qn−1 = zQ2
n − 4

[
QnQ′′

n − (Q′
n)

2
]
,

with Q0(z) = 1 and Q1(z) = z. The other rational solutions of PII are given by

w0 = 0 and w−n = −wn.

The Yablonskii–Vorob’ev polynomials Qn(z) are monic polynomials of degree
1
2n(n + 1) with integer coefficients. It is clear from the recurrence relation (2.2)

that the Qn(z) are rational functions, though it is not obvious that in fact they are

polynomials since one is dividing by Qn−1(z) at every iteration. Hence it is somewhat

remarkable that the Yablonskii–Vorob’ev polynomials are polynomials. A list of the

first few Yablonskii–Vorob’ev polynomials and plots of the locations of their zeros in

the complex plane are given in [22]. A plot of the roots of Q25(z) in the complex

plane is given in Figure 2. The interlacing of the roots of these special polynomials

in the complex plane is discussed in §7.

It is well-known that PII can be written as the Hamiltonian system [60]

(2.3) q′ =
∂HII

∂p
= p − q2 − 1

2z, p′ = − ∂HII

∂q
= 2qp + α + 1

2 ,

where the (non-autonomous) Hamiltonian HII(q, p, z; α) is given by

(2.4) HII(q, p, z; α) = 1
2p2 − (q2 + 1

2z)p − (α + 1
2 )q.
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Figure 2.1. Roots of the Yablonskii–Vorob’ev polynomial Q25(z)

Eliminating p in (2.3) then q = w satisfies PII, whilst eliminating q yields

(2.5) pp′′ = 1
2

(
dp

dz

)2

= 1
2 (p′)2 + 2p3 − zp2 − 1

2 (α + 1
2 )2,

which is known as P34, since it is equivalent to equation XXXIV of Chapter 14 in [34].

The Hamiltonian function σ(z; α) = HII(q, p, z; α), where p and q satisfy (2.3), satisfies

the second order, second degree equation [36, 60]

(2.6) (σ′′)2 + 4(σ′)3 + 2σ′(zσ′ − σ) = 1
4 (α + 1

2 )2.
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