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ON THE ALTERNATE DISCRETE PAINLEVÉ EQUATIONS

AND RELATED SYSTEMS

by

Alfred Ramani, Basil Grammaticos & Thamizharasi Tamizhmani

Abstract. — We examine the family of discrete Painlevé equations which were intro-
duced under the qualifier of “alternate”. We show that there exists a transformation
between the two canonical forms of these equations, and we proceed to link these
forms to the contiguity relations of the continuous PVI. We describe the full degen-
eration cascade of this contiguity, obtaining all related discrete Painlevé equations
(among which, one which has never been derived before) as well as mappings which
are solvable by linearisation.

Résumé(Sur les équations discrètes alternatives de Painlevé et les systèmes associés)
Nous étudions la famille des équations de Painlevé discrètes dites « alternatives ».

Nous exhibons une transformation entre les deux formes canoniques et nous relions
celles-ci aux relations de contigüıté de l’équation de Painlevé continue PVI. Nous dé-
crivons la cascade de dégénérescence complète liée à cette contigüıté ; nous explicitons
toutes les équations de Painlevé discrètes correspondantes (dont une inconnue à ce
jour) ainsi que des applications résolubles par linéarisation.

1. Introduction

While the discrete Painlevé equations (d-Ps) have properties which mirror those

of their continuous counterparts, there exists an aspect where the two families differ

drastically: it concerns the abundance of the two sets of equations. The continuous

Painlevé equations are traditionally given under six canonical forms [6] and, while the

situation is somewhat more complicated than that [2], it remains that their number

is restricted and small. The number of the known discrete Painlevé equations, on the

other hand, has been steadily increasing resulting to, literally, dozens of various dis-

crete analogues of the discrete Painlevé transcendental equations [4]. To fix the ideas,

we remind the reader that the term discrete Painlevé equations is used to designate a

nonlinear, nonautonomous, integrable, second order mapping, the continuous limit of
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which is a Painlevé equation. This last feature has been the source of two difficulties.

First, as was shown in various works, and proven in a systematic way by Sakai [15],

the discrete Painlevé equations may contain up to seven parameters while the number

of parameters of the continuous Painlevé equations cannot exceed four (in the case

of PVI). Thus, all continuous limits of discrete Painlevé equations, with a number

of parameters at least equal to four, are constrained to lead to PVI. Second, even

for discrete equations with a number of parameters less than four, one has a profu-

sion of equations with the same continuous limit. What is most unfortunate is that,

when the discrete Painlevé equations were first discovered, their naming was based

essentially on their continuous limit [13]. Thus, a d-P with continuous limit PI was

called “discrete PI” and so on. These difficulties were alleviated later, thanks to the

Sakai classification, based on the affine Weyl group that describes the transformations

of each d-P. But the traditional names of the d-Ps, once introduced, turned out to

be impossible to eradicate. Among the various ways to deal with the nomenclature

difficulty was the introduction of qualifiers like “standard”, “alternate”, “asymmetric”

and so on.

Thus, when in [3] we derived the d-P:

(1.1)
zn−1 + zn

1 − xn−1xn

+
zn + zn+1

1 − xnxn+1
= xn +

1

xn

+ 2zn + 2µ

and found that its continuous limit was PII, we dubbed it alternate d-PII (“alterna-

tive” could have been a better choice of adjective), in order to distinguish it from

the “standard” d-PII, xn+1 + xn−1 = (znxn + a)/(1 − x2
n). In the same paper, the

alternate d-PI was also obtained:

(1.2)
zn−1 + zn

xn−1 + xn

+
zn + zn+1

xn + xn+1
= x2

n + 1

As a matter of fact, (1.2) is the difference equation obtained by Jimbo and Miwa in

[7] from the contiguity relations of the solutions of the (continuous) Painlevé II.

The alternate d-PII has been the object of a very detailed study [8], where we

have presented its Lax pair, Miura transformations, auto-Bäcklund transformations,

special solutions, and so on. Moreover, the study of alternate d-PII has revealed

the property of self-duality, which has been crucial for the geometrical description of

discrete Ps in terms of affine Weyl groups.

In this paper, we examine the equations of the “alternate” family, from a slightly

different point of view. We show in particular how they can be derived from the conti-

guity relations of the solutions of the continuous PVI equation. While the systematic

application of this approach mostly leads to known d-Ps, we obtain also one new

d-P which has an unusual form. We show how we can, starting from the contiguity

relation, obtain also discrete equations which are not d-Ps but linearisable mappings.
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2. The canonical form of alternate d-Ps

Finding the canonical form of a given equation, be it differential or difference, is a

highly nontrivial task. The criteria of “canonicity” are not always explicit and thus,

sometimes, the choice of the canonical form is a question of ... choice. For the discrete

Ps, both difference- and q-, we have presented in [12] an approach which classified the

forms based on the QRT matrices of the mapping that one finds in the autonomous

limit of the d-P. However, this approach concerns only what we have called the

“standard” family of d-Ps, and thus does not apply to the alternate forms.

For d-Ps, the only transformations that are allowed in order to bring a given d-P

under canonical form are homographic transformations. For reasons that will become

obvious in the next section, we have sought a transformation which would bring the

l.h.s. of the alternate d-PII equation to the form of the l.h.s. of the alternate d-PI.

This transformation turns out to be simply:

(2.1) y =
x + 1

x − 1

Thus, starting from (1.1) we obtain the mapping:

(2.2)
zn−1 + zn

yn−1 + yn

+
zn + zn+1

yn + yn+1
=

4(znyn + µ)

y2
n − 1

+
4(y2

n + 1)

(y2
n − 1)2

While the l.h.s. of the equation becomes identical to that of alternate d-PI, the r.h.s.

becomes substantially more complicated.

At this point, it is interesting to notice that the transformation (2.1) is an invo-

lution, and therefore it transforms the l.h.s. of the alternate d-PII into that of the

alternate d-PI and vice-versa. Indeed applying the transformation (2.1) to (1.2) we

obtain:

(2.3)
zn−1 + zn

1 − yn−1yn

+
zn + zn+1

1 − ynyn+1
=

4z

1 − yn

+
4yn(y2

n + 1)

(1 − yn)4

Finally, we wish to point out another interesting transformation that exists for equa-

tions of the form of alternate d-PI and alternate d-PII. It consists in simply inverting

x. For an equation of the form (1.1) and r.h.s. R(x) we find that, after the transforma-

tions that restore the l.h.s. to its initial form, the r.h.s. becomes R′(x) = 4z − R( 1
x
).

In particular, for the alternate d-PII we find that the equation is invariant if we in-

vert x provided we change the sign of x and µ. In the alternate d-PI case, if we

start from an equation of the form (1.2) and r.h.s. R(x), we obtain, after the proper

manipulations so as to leave the l.h.s. invariant, a new r.h.s. R′(x) = 4z
x
− 1

x2 R( 1
x
).

The transformations presented in this section do show that there is no reason to

prefer an alternate d-PI form to an alternate d-PII one, and vice-versa. Still, they

cannot settle the question of finding the canonical form of the alternate d-Ps. In order

to provide a satisfactory answer we must go back to the origin of these equations. As

we have shown in [3], these d-Ps stem from contiguity relations of the continuous PII
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and PIII respectively. Thus, the question of canonical forms of the alternate d-Ps can

be recast as a question on the canonical form of contiguity relations of continuous Ps.

This makes possible to enlarge the scope of the investigations and analyse in more

generality the discrete Ps that appear as contiguities.

3. Discrete Ps as contiguity relations of continuous Ps

Since we are going to examine the relations of discrete to continuous Ps through

the contiguities of the latter, it is natural to start with the most general continuous P,

namely PVI. The discrete Ps related to PVI have been examined already in [10], and

also in [9]. In what follows, we shall present a somewhat different approach which

will allow the treatment of the equations involved on the same footing.

The continuous PVI equation is traditionally given in the form

(3.1)

w′′ =
1

2

(

1

w
+

1

w − 1
+

1

w − t

)

w′2 −

(

1

t
+

1

t − 1
+

1

w − t

)

w′

+
w(w − 1)(w − t)

2t2(t − 1)2

(

α2 −
β2

w2
+

γ2(t − 1)

(w − 1)2
+

(1 − δ2)t(t − 1)

(w − t)2

)

where in this particular parametrisation α, β, γ and δ are exactly the monodromy

exponents θ∞, θ0, θ1 and θt. In this form it is assumed that three of the singular

points of PVI are located at the fixed points ∞, 0, 1, while the last singular point at t

remains movable. While this is an assumption that simplifies substantially the form

of PVI, it is by no means necessary. It is in fact interesting to investigate the form

of PVI when all four singular points are movable: at a(t), b(t), c(t) and d(t). In this

case, we can rewrite PVI as (with the constraint (a−d)(b−c)
(a−c)(b−d) = t)

(3.2)

w′′ =
1

2

( 1

w − a
+

1

w − b
+

1

w − c
+

1

w − d

)

w′2

−
(1

t
+

1

t − 1
+

a′

w − a
+

b′

w − b
+

c′

w − c
+

d′

w − d
+ e

)

w′

+(w−a)(w−b)(w−c)(w−d)
( f

(w − a)2
+

g

(w − b)2
+

h

(w − c)2
+

k

(w − d)2

)

where

e =
a′ − b′

a − b
+

a′ − c′

a − c
+

(a − d)(b − c)

(a − b)(a − c)
+

(a − d)a′

(a − b)(a − c)
+

(a − d)b′

(a − b)(c − b)
+

(a − d)c′

(a − c)(b − c)

and f, g, h, k are lengthy expressions which cannot be given in a paper of reasonable

length. They are of the form f = f0α
2 + f1, and similarly for g, h, k, where the

derivatives of a, b, c, d appear only in f1, g1, h1, k1. In order to recover the “standard”

expression (3.1) we take a → ∞, b → 0, and c → 1, whereupon d → t.
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The Miura transformations associated to (3.1) have been derived in the form of

a first degree relation by Okamoto [11] and rediscovered in a different approach by

Nijhoff and collaborators [9]. Using this Miura transformation one can derive the

Schlesinger transformations for PVI and obtain the contiguity relations following the

well-established procedure [3]. (We will avoid at this point all comments on the fine

distinctions on the “Schlesinger transformation” proper terminology [1]. While these

distinctions are necessary when one aims at a rigorous treatment they are beyond the

scope of the practical approach adopted here, where our aim is just the derivation of

discrete Ps).

We shall not go into the details of the derivation of the contiguity relation of PVI.

They can essentially be found in [10] and [1]. Adopting the convenient form of the

latter (and correcting a factor of 2 misprint) we can rewrite the contiguity relation as

(3.3)

zn−1 + zn

xn − xn−1
+

zn + zn+1

xn − xn+1
=

zn + p(−1)n

xn − a
+

zn + q(−1)n

xn − b
+

zn + r(−1)n

xn − c
+

zn + s(−1)n

xn − d

where zn = δ(n − n0) and we have the constraint p + q + r + s=0. Expression (3.3)

is the contiguity relation for a general position of the singularities corresponding to

equation (3.2). Notice that if one of the singular points, say a, is taken to ∞, then

the r.h.s. has only three terms and no constraint exists between the surviving q, r, s.

Bringing the positions of the singularities in (3.3) to the “standard” ones ∞, 0, 1, t,

involves homographic transformations of the independent variables, which amounts

to going backwards from (3.2) to (3.1).

A more interesting transformation one can perform on (3.3) is to treat the even-

and odd-index xs in a different way. For example, if we reverse the sign of one x out

of two, i.e., xn → (−1)nxn, then we obtain an equation (which is reminiscent of that

of alternate d-PI):

(3.4)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

∑

i=1,4

zn − αi(−1)n

xn − ai(−1)n

Similarly, if we invert one x out of two, i.e. xn → x
(−1)n

n , we obtain a form reminiscent

of alternate d-PII:

(3.5)
zn−1 + zn

1 − xnxn−1
+

zn + zn+1

1 − xnxn+1
=

∑

i=1,4

zn − αi(−1)n

1 − xna
(−1)n+1

i

This mapping is just the one obtained in [10], with specific values for the ais, precisely

as a contiguity of the solutions of PVI (but, also, initially as a similarity reduction of

the discrete mKdV).

Now, that the general framework is set, we turn to the cases obtained from (3.3)

or equivalently, (3.4) or (3.5), by degeneration through coalescence of singularities.
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