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Abstract. — In this paper we give an algorithmic method of deriving the Lax pair for
the modified Korteweg-de Vries hierarchy. For each n, the compatibility condition
gives the n-th member of the hierarchy, rather than its derivative. A direct conse-
quence of this is that we obtain the isomonodromy problem for the second Painlevé
hierarchy, which is derived through a scaling reduction.

Résumé(La paire de Lax de la hiérarchie mKdV). — Dans cet article, nous pré-
sentons une méthode algorithmique pour le calcul de la paire de Lax de la
hiérarchie de Korteweg-de Vries modifiée. Pour tout n, la condition de com-
patibilité fournit le n

ième membre de la hiérarchie lui-même et non pas sa
dérivée. Grâce à une réduction par l’action du groupe de similarité, nous en

déduisons un problème d’isomonodromie pour la deuxième hiérarchie de Pain-
levé.

1. Introduction

There has been considerable interest in partial differential equations solvable by

inverse scattering, the so-called soliton equations , since the discovery in 1967 by Gard-

ner, Greene, Kruskal and Miura [8] of the method for solving the initial value problem

for the Korteweg-de Vries (KdV) equation

(1) ut + 6uux + uxxx = 0.

In the inverse scattering method, which can be thought of as a nonlinear analogue of

the Fourier transform method for linear partial differential equations, the nonlinear

2000Mathematics Subject Classification. — Primary 33E17; Secondary 34M55.
Key words and phrases. — Lax pairs, isomonodromy problems, hierarchies.

Research funded by the Australian Research Council Discovery Project Grant #DP0208430.
Research funded by Engineering and Physical Sciences Research Council Fellowship #GR/M28903.
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PDE is expressed as the compatibility of two linear equations (the celebrated Lax

Pair). Typically, this has the form

Φx = LΦ,(2)

Φt = MΦ,(3)

where Φ is a vector, an eigenfunction, and L and M are matrices whose entries

depend on the solution u(x, t) of the associated nonlinear partial differential equation.

Given suitable initial data u(x, 0), one obtains the associated scattering data S(0) by

solving the spectral problem (2). The scattering data S(t) is then obtained by solving

the temporal problem (3), and finally the solution u(x, t) of the partial differential

equation is obtained by solving an inverse problem, which is usually expressed as a

Riemann-Hilbert problem and frequently the most difficult part (see, for example,

[1, 4] and the references therein).

Solutions of the modified Korteweg-de Vries (mKdV) equation

(4) vt − 6v2vx + vxxx = 0,

are related to solutions of the KdV equation (1) through the Miura transformation

u = vx − v2 [19].

Soliton equations all seem to possess several remarkable properties in common

including, the “elastic” interaction of solitary waves, i.e. multi-soliton solutions, Bäck-

lund transformations, an infinite number of independent conservation laws, a complete

set of action-angle variables, an underlying Hamiltonian formulation, a Lax represen-

tation, a bilinear representation à la Hirota, the Painlevé property, an associated

linear eigenvalue problem whose eigenvalues are constants of the motion, and an in-

finite family of equations, the so-called hierarchy, which is our main interest in this

manuscript (cf. [1, 4]).

The standard procedure for generating the mKdV hierarchy is to use a combination

of the Lenard recursion operator for the KdV hierarchy and the Miura transformation,

as we shall briefly explain now.

The KdV hierarchy is given by

(5) utn+1
+

∂

∂x
Ln+1[u] = 0, n = 0, 1, 2, . . . ,

where Ln satisfies the Lenard recursion relation [15]

(6)
∂

∂x
Ln+1 =

(
∂3

∂x3
+ 4u

∂

∂x
+ 2ux

)
Ln.
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THE LAX PAIR FOR THE MKDV HIERARCHY 55

Beginning with L0[u] = 1
2 , this gives

L1[u] = u, L2[u] = uxx + 3u2, L3[u] = uxxxx + 10uuxx + 5u2
x + 10u3,

and so on. The first four members of the KdV hierarchy are

ut1 + ux = 0,

ut2 + uxxx + 6uux = 0,

ut3 + uxxxxx + 10uuxxx + 20uxuxx + 30u2ux = 0,

ut4 + uxxxxxxx + 14uuxxxxx + 42uxuxxxx + 70uxxuxxx

+ 70u2uxxx + 280uuxuxx + 70u3
x + 140u3ux = 0.

The mKdV hierarchy is obtained from the KdV hierarchy via the Miura transfor-

mation u = vx − v2 (see [3, 5, 7]) and can be written as

(7) vtn+1
+

∂

∂x

(
∂

∂x
+ 2v

)
Ln

[
vx − v2

]
= 0, n = 1, 2, 3, . . .

The first three members of the mKdV hierarchy are

vt1 + vxxx − 6v2vx = 0,

vt2 + vxxxxx − 10v2vxxx − 40vxvxx − 10v3
x + 30v4vx = 0,

vt3 + vxxxxxxx − 14v2vxxxxx − 84vvxvxxxx − 140vvxxvxxx

− 126v2
xvxxx − 182vxv

2
xx + 70v4vxxx + 560v3vxvxx

+ 420v2v3
x − 140v6vx = 0.

This procedure generates the mKdV hierarchy. We show how to derive a Lax pair

for this hierarchy from the one of the KdV hierarchy in the appendix of this paper.

However, this procedure gives rise to a hierarchy which is the derivative of the mKdV

hierarchy.

Our interest is in the mKdV hierarchy rather than its derivative. We overcome this

by generating the Lax pair for the (undifferentiated) mKdV hierarchy in a straight-

forward, algorithmic way, by using the AKNS expansion technique [2]. We call the

result the natural Lax pair for the mKdV hierarchy. A direct consequence of this

is that we also obtain the isomonodromic problem for the second Painlevé hierarchy.

Our natural Lax pair for the mKdV hierarchy yields a natural isomonodromy problem

that contains the Flaschka-Newell linear problem as the n = 1 case.

We derive the natural Lax pair for the mKdV hierarchy in §2 and the natural

isomonodromy problem for the second Painlevé hierarchy in §3. In §4 we discuss

our results. The Lax pair arising from that for the KdV hierarchy is derived in the

appendix.
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2. The Natural Lax Pair for the mKdV Hierarchy

The well known Lax pair for the mKdV equation is

∂Φ

∂x
= LΦ =

(
−iζ v

v iζ

)
Φ(8a)

∂Φ

∂t
= MΦ

=




−4iζ3 − 2iζv2 4ζ2v + 2iζvx − vxx + 2v3

4ζ2v − 2iζvx − vxx + 2v3 4iζ3 + 2iζv2



Φ

(8b)

This Lax pair was first given by Ablowitz, Kaup, Newell, and Segur (AKNS) [2]. In

the same paper it is suggested that higher order equations in the mKdV hierarchy

could be generated by considering higher degree expansions in the entries of M. We

follow this procedure here.

Proposition 1. — For each integer n ≥ 1, the Lax pair for that n-th equation (7) of

the mKdV hierarchy is

∂Φ

∂x
= LΦ =




−iζ v

v iζ



Φ(9a)

∂Φ

∂tn+1
= MΦ =




2n+1∑

j=0

Aj(iζ)
j

2n∑

j=0

Bj(iζ)
j

2n∑

j=0

Cj(iζ)
j −

2n+1∑

j=0

Aj(iζ)
j




Φ(9b)

where

A2n+1 = 4n, A2k = 0, ∀ k = 0, . . . , n,(10a)

A2k+1 =
4k+1

2

{
Ln−k

[
vx − v2

]
−

∂

∂x

(
∂

∂x
+ 2v

)
Ln−k−1

[
vx − v2

]}
,

k = 0, . . . , n− 1,

(10b)

B2k+1 =
4k+1

2

∂

∂x

(
∂

∂x
+ 2v

)
Ln−k−1

[
vx − v2

]
, k = 0, . . . , n− 1,(10c)

B2k = −4k

(
∂

∂x
+ 2v

)
Ln−k

[
vx − v2

]
, k = 0, . . . , n,(10d)

C2k+1 = −B2k+1, k = 0, . . . , n− 1,(10e)

C2k = B2k, k = 0, . . . , n.(10f)
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Proof. — The compatibility Φxt = Φtx of equations (9) is guaranteed by the condi-

tions

vC − vB =
∂A

∂x
,(11a)

vt − 2iζB − 2vA =
∂B

∂x
,(11b)

vt + 2iζC + 2vA =
∂C

∂x
.(11c)

At the order O(1) in ζ we obtain

vt =
∂B0

∂x
= −

∂

∂x

(
∂

∂x
+ 2v

)
Ln

[
vx − v2

]
,

that is (7). We have to show that at each order in ζj the compatibility conditions

(11) are satisfied. At each order O(ζj) the conditions (11) give

∂Aj

∂x
= v(Cj − Bj),(12a)

∂Bj

∂x
= −2Bj−1 − 2vAj ,(12b)

∂Cj

∂x
= 2Cj−1 + 2vAj.(12c)

We proceed by induction. At the order O(ζ2n+1), since by assumption, B2n+1 and

C2n+1 are null, the compatibility conditions give

∂

∂x
A2n+1 = 0

and by assuming B2n = −4n
(

∂
∂x + 2v

)
L0

[
vx − v2

]
, (12b) gives

−4n

(
∂

∂x
+ 2v

)
L0 + vA2n+1 = 0.

Assuming A2n+1 = 4n the compatibility condition is satisfied because L0 = 1
2 . We

now assume

B2k+1 =
4k+1

2

∂

∂x

(
∂

∂x
+ 2v

)
Ln−k−1

[
vx − v2

]
,

C2k+1 = −B2k+1,

(13)
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