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Abstract. — We present in these lecture notes a few recent results about the large

time behavior of solutions of the Euler equations in the full plane or in a half plane.

We will investigate the confinement properties of the vorticity and we will try to

determine the structure of the weak limit of different rescalings of the vorticity.

Résumé(Comportement en temps grand pour les fluides parfaits incompressibles)
Nous présentons dans ces notes de cours quelques résultats récents sur le com-

portement en temps grand des solutions des équations d’Euler dans le plan entier

ou dans un demi-plan. Nous étudions les propriétés de confinement du tourbillon et

nous essaierons de déterminer la structure de la limite faible de divers changements

d’échelle du tourbillon.

1. Introduction

These lecture notes correspond to an eight hours mini-course that the author taught

at the CIMPA summer school in Lanzhou (China) during July 2004.

The equation of motion of a perfect incompressible fluid were deduced by Euler

[13] by assuming that there is no friction between the molecules of the fluid. In the

modern theory of existence and uniqueness of solutions, the case of the dimension two

is by far the richest one. Global existence and uniqueness of bidimensional solutions

was first proved by Wolibner [42] for smooth initial data and by Yudovich [45] for data

with bounded vorticity. There are also some global existence results (no uniqueness

yet) when the vorticity belongs to Lp or is a nonnegative compactly supported H−1

Radon measure. As far as the dimension three is concerned, only some local in time

results are known, except in some very particular cases.
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After obtaining this global existence theory in dimension two under more or less

satisfactory hypothesis, a natural question arises: what is the large time behavior of

these solutions? Unfortunately, the answer to this question is still largely unknown.

The few results that are known give some information on the vorticity rather than the

velocity itself. This 8 hours mini-course is intended to present the latest developments

on the subject together with a introduction to the equations and a review of the main

global existence of solutions results.

The structure of these notes is the following. In Part I we start by giving a very

short presentation of the equations, we introduce the main quantities and list without

proof the conservations laws that will be used in the sequel. Next we review the

most important global existence and uniqueness of solutions results; the main ideas

of the proofs are also highlighted. After this introductory part, we discuss in Part

II some relevant examples of solutions for the Euler equations and the vortex model;

the behavior observed here will be precious in the sequel. Part III deals with the

confinement properties of nonnegative vorticity. We end this work with the most

general case, the case of unsigned vorticity. Here we will find another point of view for

the large time behavior: we will try to describe the weak limits of different rescalings

of the vorticity.

Part I is given only to make these lecture notes self-contained. For these reasons,

the write-up is rather sketchy with very few details given. The main part of this work

consists of Parts II, III and IV which are more complete and carefully written.

PART I

PRESENTATION OF THE EQUATIONS AND EXISTENCE OF

SOLUTIONS

2. Presentation of the equations, Biot-Savart law and conserved

quantities

Let u be the velocity of a perfect incompressible fluid filling R
n and p the pressure.

Assuming that the density is constant equal to 1, the vector field u and the scalar

function p must satisfy the following Euler equation

∂tu+ u · ∇u = −∇p, div u = 0, u
∣∣
t=0

= u0,

where div u =
∑

i ∂iui and u · ∇ =
∑

i ui∂i. If we place ourselves on a bounded

domain, then we must also assume the so-called slip boundary conditions which say

that the velocity is tangent to the boundary and express the fact that the boundary
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is not permeable. We define the vorticity to be the following antisymmetric matrix

Ω = (∂jui − ∂iuj)i,j .

In dimension 2 we identify Ω to a scalar function,

Ω ≡ ω = ∂1u2 − ∂2u1

while in dimension 3 we identify it with the following vector field.

Ω ≡ ω =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1



 .

From the divergence free condition on u, one can check that

4u = div Ω =
(∑

j

∂jΩij

)

i

Using the formula for the fundamental solution of the Laplacian in R
n we deduce the

following formula expressing the velocity in terms of the vorticity.

u = Cn

∫

Rn

Ω(y)
x− y
|x− y|n dy.

The above relation is called the Biot-Savart law. In dimension 2, the Biot-Savart law

can be expressed as follows:

u =

∫

R2

(x− y)⊥
2π|x− y|2ω(y) dy =

x⊥

2π|x|2 ∗ ω,

where x⊥ = (−x2, x1).

It is a simple calculation to check that the vorticity equation is

∂tΩ + u · ∇Ω + (∇u)Ω + Ω(∇u)t = 0

while in dimension 2 it can be expressed as a simple transport equation:

(1) ∂tω + u · ∇ω = 0.

From this transport equation it is not difficult to deduce that the following quan-

tities are conserved in dimension 2:

–
∫

R2 u;

– the energy ‖u‖2L2 and the generalized energy
∫∫

R2×R2 log |x− y|ω(x)ω(y) dxdy;

–
∫

R2 ω and all Lp norms of ω, 1 ≤ p ≤ ∞;

– center of mass
∫

R2 xω(x) dx;

– moment of inertia
∫

R2 |x|2ω(x) dx;

– circulation on a material curve
∫
Γ
u · ds (Γ is a curve transported by the flow).
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3. Existence and uniqueness results

The aim of this section is to give a review of the most important global existence

(and sometimes uniqueness) of bidimensional solutions to the Euler equations and

also to give a very short sketch of the proof with the main ingredients. We start

with the case of classical solutions in Subsection 3.1, we continue with Lp vortici-

ties in Subsection 3.2 and we end with the very interesting case of vortex sheets in

Subsection 3.3.

3.1. Strong solutions and the blow-up criterion of Beale-Kato-Majda. —

We first deal with strong solutions that belong to the Sobolev space Hm(Rn), m >
n
2 +1. By Sobolev embeddings, such a solution is C1 so it verifies the equation in the

classical sense. Their existence is in general only local in time, but the Beale, Kato

and Majda [3] blow-up criterion ensures that the existence is global in dimension 2.

More precisely, we have the following result.

Theorem 3.1. — Suppose that the initial velocity u0 is divergence free and belongs to

the Sobolev space Hm(Rn) where m > n
2 + 1. There exists a unique local solution

u ∈ C0
(
[0, T );Hm

)
with T ≥ C

‖u0‖Hm
. Moreover, the following blow-up criterion

due to Beale, Kato and Majda holds: if T ∗, the maximal time existence of this local

solution, is finite, then
∫ T∗

0 ‖Ω‖L∞ =∞.

Corollary 3.2. — In dimension 2 the above solution is global.

Proof of the corollary. — The proof is trivial from the Beale, Kato and Majda blow-

up criterion since the L∞ norm of the vorticity is conserved.

Sketch of proof of Theorem 3.1. — The a priori estimates

∂t‖u‖2Hm ≤ C‖u‖2Hm‖∇u‖L∞

follow from the following Gagliardo-Nirenberg inequality

‖D`u‖
L

2k
`
≤ C‖u‖1−

`
k

L∞ ‖Dku‖
`
k

L2 , 0 ≤ ` ≤ k,

and from the cancellation
∫
u ·∇DmuDmu = 0. The first part of the theorem follows

from the Sobolev embedding Hm−1 ⊂ L∞ used to estimate ‖∇u‖L∞ ≤ C‖u‖Hm .

We now prove the blow-up condition. Assume, by absurd, that
∫ T∗

0
‖Ω‖L∞ < ∞.

From the vorticity equation and using that ‖∇u‖L2 ' ‖Ω‖L2, one can easily deduce

that Ω ∈ L∞(0, T ∗;L2). We now use the following standard logarithmic inequality

‖∇u‖L∞ ≤ C[1 + ‖Ω‖L2 + ‖Ω‖L∞(1 + log+ ‖u‖Hm)]

to deduce that

‖∇u‖L∞ ≤ C(1 + ‖Ω‖L∞

∫ t

0

‖∇u‖L∞).
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Gronwall’s inequality therefore implies that
∫ T∗

0
‖∇u‖L∞ < ∞ which in turn gives

that u ∈ L∞(0, T ∗;Hm) which obviously contradicts the maximality of T ∗.

3.2. Solutions with compactly supported Lp vorticity. — From now on we

assume that the space dimension is equal to two. Let Lp
c denote the space of com-

pactly supported Lp functions. If p > 1 and ω0 ∈ Lp
c then ω ∈ L∞(R+;Lp) and

therefore u ∈ L∞(R+;W 1,p
loc ). Global existence of solutions follows with a standard

approximation procedure and basically from the compact embedding W 1,p
loc ↪→ L2

loc,

see [12]. Uniqueness of these solutions is not known unless p =∞ when the following

uniqueness result due to Yudovich [45] holds.

Theorem 3.3(Yudovich). — Suppose that ω0 ∈ L∞
c . There exists a unique global so-

lution such that ω ∈ L∞(R+;L∞
c ).

Sketch of proof of uniqueness. — The proof relies on the following well-known singu-

lar integral estimate:

‖∇u‖Lp ≤ Cp‖ω‖Lp ∀2 ≤ p <∞.

Let u and v be two solutions and set w = u− v. Then

∂tw + u · ∇w + w · ∇v = ∇p′.

We now make L2 energy estimates on this equation by multiplying with w to obtain

∂t‖w‖2L2 = −2

∫
w · ∇vw ≤ 2‖w‖L2‖∇v‖Lp‖w‖

L
2p

p−2
≤ Cp‖w‖2−

2
p

L2 .

After integration we get ‖w(t)‖L2 ≤ (Ct)p. Sending p→∞ yields w
∣∣
[0, 1

C ]
= 0. Global

uniqueness follows by repeating this argument.

3.3. Vortex sheets and the Delort theorem. — The vortex sheet problem ap-

pears when the velocity has a jump over an interface. In this case, the vorticity is no

longer a function but a measure since it must contain the Dirac mass of the interface.

Previous global existence results do not apply. Nevertheless, we have the following

very important global existence result due to Delort [11].

Theorem 3.4(Delort). — Suppose that u0 ∈ L2
loc(R

2) is such that the initial vorticity

ω0 is a nonnegative compactly supported Radon measure. Then there exists a global

solution u ∈ L∞
loc(R+;L2

loc).

Sketch of proof. — We give here the main ideas of the version of the proof given by

Schochet [40]. First of all, it is very easy to see by standard energy estimates that a

priori u ∈ L∞
loc(R+;L2

loc) which implies that ω ∈ L∞
loc(R+;H−1

loc ).
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