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SOME LIMITING SITUATIONS FOR SEMILINEAR
ELLIPTIC EQUATIONS

by

Dong Ye

Abstract — The objective of this mini-course is to take a look at a standard semilinear
partial differential equation —Au = Af(u) on which we show the use of some basic
tools in the study of elliptic equation. We will mention the maximum principle, barrier
method, blow-up analysis, regularity and boot-strap argument, stability, localization
and quantification of singularities, Pohozaev identities, moving plane method, etc.

RésumégQuelques situations limites pour les équations semi-liradres elliptiques)

L’objectif de ce mini-cours est de jeter un coup d’ceil sur une équation aux dérivées
partielles standard —Awu = Af(u), avec laquelle nous allons montrer quelques outils
de base dans 1’étude des équations elliptiques. Nous mentionnerons le principe du
maximum, la méthode de barriére, I’analyse de blow-up, la régularité, ’argument de
boot-strap, la stabilité, la localisation et quantification de singularités, les identités
de Pohozaev, la méthode du plan mobile, etc.

1. Introduction

We consider the following semilinear partial differential equation:
—Au = Af(u) in
(Pr) u >0 in Q,
u =0 on 0,

where ¢ R¥ is a smooth bounded domain and f is a smooth positive, nondecreasing
and convex function over R . For getting a positive solution u, necessarily A is
positive.

The convexity of f implies that

= limy_o f(t)/t = a € Ry U{oo} exists.

—Ifa e Ry, then lim .o f(t) —at =1 € RU{—oc} exists.
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Since the case a = 0 is trivial (f = constant), we will suppose that a > 0. Thus we
can divide the study of problem (Py) into two different situations: the quasilinear case
when a € (0,00) and superlinear case when a = co. We will see that the first case is
rather well understood, while many questions are remained open for the second one.

In the following, || - ||, denotes the standard L? norm for 1 < p < co. WHP(Q) is
the Sobolev space of functions f such that f and Vf € LP(Q2). When p = 2, we use
for simplicity H'(Q) to denote W12(Q), H} () is the space of functions f € H(Q)
verifying f = 0 on 992. The symbol C' means always a positive constant independent
of .

2. Quasilinear situation

We begin with the quasilinear case where a € (0,00). Many results presented here
are obtained by Mironescu & Radulescu in [27].

2.1. Minimal solution and stability. — Since f(u) < au + f(0) in this case,
then if u € L}(Q) is a weak solution of (Py) in the sense of distribution, we get easily
that u is always a classical solution by standard boot-strap argument.

Lemma2.1 — For A > 0, if (P\) is resolvable, then a minimal solution u) exists
in the sense that any solution v of (Py\) verifies v > uy in Q. Moreover, (Py) is
resolvable for any N € (0, \).

Proof. — We will use the barrier method. Remark that for A > 0, wg = 0 is a sub
solution of (Py) since f(0) > 0. Now we define for any n € N,

(1) —Awpt1 = Af(wy) In Q, wpy1 =0 on IN.

Using maximum principle, w; > wg = 0 in €. On the other hand, let v be any
solution of (Py), by monotonicity of f, we obtain

—A(wy —v) =A[f(0) = f(v)] <0 inQ, wy—v=0 ond.

Thus w; < v in Q. We can prove by induction that the sequence {w,} verifies
Wy < Wpp1 < v in Q for any n, so uy = lim,—o w, is well defined, and wu) is a
solution of (Py) by passing to the limit in (1). Moreover, uy < v. Notice that the
definition of u) is independent of the choice of v, it is the minimal solution claimed.

If (Py) has a solution wu, it is a super solution for (Py/) when 0 < X < A. Aswg =0
is always a sub solution, the barrier method will solve as above (Py/). O

Let A1 be the first eigenvalue of —A on 2 with the Dirichlet boundary condition,
we define ¢( to be the first eigenfunction such that ¢ > 0 in Q and ||¢g||2 = 1.

Lemma 2.2 — If we denote ro = infisg f(t)/t, then (Py) has no solution for A >
A1/ro. On the other hand, (Py) is resolvable for A > 0 small enough.
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Proof. — Let & € HY(Q) N L>(Q) be the solution of —A¢ =1 in Q. It is easy to see
that ¢ is a super solution of (Py) for A < f(||¢]|s)™!. Applying the barrier method,
we get a solution of (Py) for such .

Now we suppose that u is a solution of (Py) for some A > 0, using ¢p as test
function and integrating by parts, we get

/\1/ poudr = —/ uApodr = —/ @OAudz:/\/ f(w)podx.
Q Q Q Q

As f(u) > rou in , we have then

(A — /\7’0)/ poudz > 0.
Q

Recalling that ¢y and u are positive in §2, the lemma is proved. o
Combining these two lemmas, we can claim

Theorem 2.3 — There exists a critical value \* € (0,00) for the parameter X\, such
that for any A > X*, no solution exists for the problem (Py) while for any A € (0, \*),
a unique minimal solution uy exists for (Py). Furthermore the mapping A\ — uy is
icreasing with .

It is natural to ask if we can determine the exact value of A* and what happens when
A = \*. Before considering these two questions, we show another characterization of
the minimal solution wy, its stability. A solution u of (Py) is called stable if and only
if the linearized operator associated to the equation, —A — Af’(u) is nonnegative.
More precisely,

(2) )\/ f'(u)thd:Eg/ |Vp|?dz, for any ¢ € H(Q).
Q )

Theorem 2.4 — Let A € (0, \*), the minimal solution uy is the unique stable solution

Of (P,\)

Proof. — First we prove that uy is stable. If it is not true, the first eigenvalue 77 of
—A — \f'(uy) is negative, then there exists an eigenfunction ¢ € H}(Q2) such that

—AY = Af'(u\)p =my inQ, >0 in Q.
Consider u® = u) — €, a direct calculation gives
—Au® = Mf(uT) = —mey = A[f(ux — ) = fux) + e f (ua)y] = e [=m + 0 (1)] .
Since 71 < 0, then —Au® — Af(u®) > 0in Q for € > 0 small enough. Otherwise, using
Hopf’s lemma, we know that uy > C% in ) for some C' > 0. Thus u® > 0 is a super

solution of (Py) for € > 0 small enough. As before, we can get a solution u such that
u < uf in 2, which contradicts the minimality of uy. So n; > 0.

Now we prove that (Py) has at most one stable solution. Suppose the contrary,
there exists another stable solution v # wy. Define ¢ = v — uy, we get

A rorgtae< [1VePds == [ papde =2 [ 170) = fun)] oo,

Q
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/Q [F@) = Fun) = F/@)(0 — un)] ode > 0.

By maximum principle, we know that ¢ > 0 in 2. The convexity of f yields that
the term in the bracket is non positive, so the only possibility is f(v) — f(ux) —
f'(v)(v—uy) =0 in Q, which means f is affine over [u)(z),v(z)] for any z € Q. Thus
f(z) = ar+b in [0, maxq v] and we get two solutions u and v of —Aw = aw+b. This

implies that
0= / u\Av — vAuydx = b/ (v —wuy)de = b/ pdz,
Q Q Q

which is impossible since b = f(0) > 0 and ¢ is positive in . So we are done. O
An immediate consequence of Theorem 2.4 is
Proposition 2.5 — For any A € (0, A1/a), (Px) has one and unique solution wy.

Proof. — Remark first a = supg, f '(t) by convexity of f. Thanks to the definition of
A1, it is clear that each solution is stable if A € (0, A1/a), so we get the uniqueness by
that for stable solution. For the existence, we can consider the minimization problem
ming (o) J(u) where

J(u) = %/Q|Vu|2dx—)\/QF(u)dx
with .
F(u) = /0 f(s)ds, wu' =max(u,0).

If A € (0, \1/a), there exist €, A > 0 depending on A such that 2AF(t) < (\; —¢)t*+ A
over R. Thus J(u) is coercive, bounded from below and weakly lower semi-continuous
in H(Q), the infimum of J is reached then by a function u € H}(Q), so also by
ut € HY(Q) since J(uT) < J(u). This critical point u > 0 of J gives a solution of
(Py)- O

2.2. Estimate of A\*. — By Proposition 2.5, we know that A* > A /a. The follow-
ing result in [27] gives us more precise information for A\*.

Theorem 2.6 — We have three equivalent assertions:
(i) A* =X\/a.
(ii) No solution exists for (Px«).
(iii) lmy—x+ uy = 00 w.c. in Q. (u.c. means “uniformly on each compact set”)

Proof. — (i) implies (ii). If (Px~) has a solution w, then uy < u in Q for any A €
(0, A*), using the monotonicity of uy, u* = limy_,x« uy is well defined and u* is clearly
a stable solution of (Py~) by limit. Consider the operator G(u, \) = —Au — Af(u), if
the first eigenvalue n; of —A — X\*f’(u*) is positive, then we can apply the Implicit
Function Theorem to get a solution curve in a neighborhood of A*, but this contradicts
the definition of A\*, so 7, = 0. Thus, there exists ¢ € H}(Q) satisfying

(3) —AY— N f ()b =0 and ¥ >0 in Q.
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Using ¢o as test function and integrating by parts, we get
/ A1 — N f'(u*)] Ypodz = 0.
Q

As A\ — A f(u*) > 0, we get f/(u*) = a in Q so that f(t) = at + b in [0, maxg u*].
But b > 0 deduces that no positive solution in Hg () can exist for the equation
—Au = Mu+ bA1/a (we can use again ¢p), so the hypothesis is not true.

(ii) implies (iii). Here we mention a result of Hormander (see [22]) as follows: For a
sequence of nonnegative super-harmonic functions {v,} in Q, either v, converges u.c.
to 0o; or there exists a subsequence which converges in L}, .(Q2). We need just to prove
that the second case cannot occur for uy. Suppose the contrary, there exist uy = uy,
which converges in L, (Q) to u* with A, — A\*. We claim that ||ug|ls < C. If it is
false, we define uy, = lywy, with ||wk||2 = 1 and limg_,o I = 0o (up to subsequence).
Since f(t) < at + f(0),

A A
—Aw, = M < a\pwy + %(0) < aMywi +C in Q,

k k

it is easy to see that wy is bounded in H}(Q), so that up to a subsequence, wy
converges weakly in H} and strongly in L? to some w € Hg. Meanwhile, —Awy, tends
to zero in L}, () since f(uy) < aux + b and I, tends to oo, this implies —Aw = 0
in Q. Hence w = 0, which is impossible because ||w||2 = limg— oo ||wk||2 = 1. So {uy}
is bounded in L?(2), hence in H}(Q) by equation. We prove readily that u* is a
solution of (Py«) which contradicts (ii).

(iii) implies (ii). Any solution u of (Py~) should satisfy u > uy, V A < A*.

(i) (iii) implies (i). Clearly limy_,x» ||ua|l2 = oo. Take uy = [ywy with [|Jwy|l2 = 1,
then we have a subsequence wy which converges weakly in Hg, strongly in L? and
almost everywhere to w > 0. Moreover, in the sense of distribution,

Aw f (lpw)

i = Naw > \jw a.e.
k

—Aw = — lim Awg = lim
D/(Q)

Taking again @ as test function, we see that the last inequality must be an equality,
so A* = A1 /a. O

Remark that when f(¢) > at in R, we cannot get a solution for A = \;/a since
f(t) > at in a neighborhood of 0 (using always ¢o as test function), we obtain an
important consequence of Theorem 2.6 and Proposition 2.5.

Corollary 2.7. — If we have lim;—.o f(t) — at =1 > 0, then \* = A\1/a, and a unique
solution uy exists for (Py) for A € (0, \*) while no solution exists for A > \*.

Moreover, the following result is established in [27].

Proposition 2.8 — If lim;_. f(t) —at =1 < 0, then \j/a < X\* < \1/r9. A unique
solution u* = limy_,x- uy exists for (P\+). Furthermore, for any X\ € (A1/a,\*), we
have a second solution vy for (Py), such that vy tends u.c. to oo in Q when A | A\ /a.
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