Séminaires & Congrès 15, 2007, p. 309–331

SOME LIMITING SITUATIONS FOR SEMILINEAR ELLIPTIC EQUATIONS

by

Dong Ye

Abstract. — The objective of this mini-course is to take a look at a standard semilinear partial differential equation $-\Delta u = \lambda f(u)$ on which we show the use of some basic tools in the study of elliptic equation. We will mention the maximum principle, barrier method, blow-up analysis, regularity and boot-strap argument, stability, localization and quantification of singularities, Pohozaev identities, moving plane method, etc.

Résumé (Quelques situations limites pour les équations semi-linéaires elliptiques)

L'objectif de ce mini-cours est de jeter un coup d'œil sur une équation aux dérivées partielles standard $-\Delta u = \lambda f(u)$, avec laquelle nous allons montrer quelques outils de base dans l'étude des équations elliptiques. Nous mentionnerons le principe du maximum, la méthode de barrière, l'analyse de blow-up, la régularité, l'argument de boot-strap, la stabilité, la localisation et quantification de singularités, les identités de Pohozaev, la méthode du plan mobile, etc.

1. Introduction

We consider the following semilinear partial differential equation:

$$(P_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain and f is a smooth positive, nondecreasing and convex function over \mathbb{R}_+ . For getting a positive solution u, necessarily λ is positive.

The convexity of f implies that

- $\lim_{t\to\infty} f(t)/t = a \in \mathbb{R}_+ \cup \{\infty\}$ exists.
- If $a \in \mathbb{R}_+$, then $\lim_{t \to \infty} f(t) at = l \in \mathbb{R} \cup \{-\infty\}$ exists.

© Séminaires et Congrès 15, SMF 2007

²⁰⁰⁰ Mathematics Subject Classification. — 35J60, 35B40.

Key words and phrases. - Semilinear elliptic PDE, blow-up analysis, regularity and singularity.

D. YE

Since the case a = 0 is trivial $(f \equiv constant)$, we will suppose that a > 0. Thus we can divide the study of problem (P_{λ}) into two different situations: the quasilinear case when $a \in (0, \infty)$ and superlinear case when $a = \infty$. We will see that the first case is rather well understood, while many questions are remained open for the second one.

In the following, $\|\cdot\|_p$ denotes the standard L^p norm for $1 \leq p \leq \infty$. $W^{1,p}(\Omega)$ is the Sobolev space of functions f such that f and $\nabla f \in L^p(\Omega)$. When p = 2, we use for simplicity $H^1(\Omega)$ to denote $W^{1,2}(\Omega)$, $H^1_0(\Omega)$ is the space of functions $f \in H^1(\Omega)$ verifying f = 0 on $\partial\Omega$. The symbol C means always a positive constant independent of λ .

2. Quasilinear situation

We begin with the quasilinear case where $a \in (0, \infty)$. Many results presented here are obtained by Mironescu & Rădulescu in [27].

2.1. Minimal solution and stability. — Since $f(u) \leq au + f(0)$ in this case, then if $u \in L^1(\Omega)$ is a weak solution of (P_{λ}) in the sense of distribution, we get easily that u is always a classical solution by standard boot-strap argument.

Lemma 2.1. — For $\lambda > 0$, if (P_{λ}) is resolvable, then a minimal solution u_{λ} exists in the sense that any solution v of (P_{λ}) verifies $v \ge u_{\lambda}$ in Ω . Moreover, $(P_{\lambda'})$ is resolvable for any $\lambda' \in (0, \lambda)$.

Proof. — We will use the barrier method. Remark that for $\lambda > 0$, $w_0 \equiv 0$ is a subsolution of (P_{λ}) since f(0) > 0. Now we define for any $n \in \mathbb{N}$,

(1)
$$-\Delta w_{n+1} = \lambda f(w_n)$$
 in Ω , $w_{n+1} = 0$ on $\partial \Omega$.

Using maximum principle, $w_1 > w_0 \equiv 0$ in Ω . On the other hand, let v be any solution of (P_{λ}) , by monotonicity of f, we obtain

$$-\Delta(w_1 - v) = \lambda [f(0) - f(v)] \le 0 \text{ in } \Omega, \quad w_1 - v = 0 \text{ on } \partial\Omega.$$

Thus $w_1 \leq v$ in Ω . We can prove by induction that the sequence $\{w_n\}$ verifies $w_n \leq w_{n+1} \leq v$ in Ω for any n, so $u_{\lambda} = \lim_{n \to \infty} w_n$ is well defined, and u_{λ} is a solution of (P_{λ}) by passing to the limit in (1). Moreover, $u_{\lambda} \leq v$. Notice that the definition of u_{λ} is independent of the choice of v, it is the minimal solution claimed.

If (P_{λ}) has a solution u, it is a super solution for $(P_{\lambda'})$ when $0 < \lambda' < \lambda$. As $\omega_0 \equiv 0$ is always a sub solution, the barrier method will solve as above $(P_{\lambda'})$.

Let λ_1 be the first eigenvalue of $-\Delta$ on Ω with the Dirichlet boundary condition, we define φ_0 to be the first eigenfunction such that $\varphi_0 > 0$ in Ω and $\|\varphi_0\|_2 = 1$.

Lemma 2.2. If we denote $r_0 = \inf_{t>0} f(t)/t$, then (P_{λ}) has no solution for $\lambda > \lambda_1/r_0$. On the other hand, (P_{λ}) is resolvable for $\lambda > 0$ small enough.

SÉMINAIRES & CONGRÈS 15

Proof. — Let $\xi \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ be the solution of $-\Delta \xi = 1$ in Ω . It is easy to see that ξ is a super solution of (P_{λ}) for $\lambda \leq f(\|\xi\|_{\infty})^{-1}$. Applying the barrier method, we get a solution of (P_{λ}) for such λ .

Now we suppose that u is a solution of (P_{λ}) for some $\lambda > 0$, using φ_0 as test function and integrating by parts, we get

$$\lambda_1 \int_{\Omega} \varphi_0 u dx = -\int_{\Omega} u \Delta \varphi_0 dx = -\int_{\Omega} \varphi_0 \Delta u dx = \lambda \int_{\Omega} f(u) \varphi_0 dx.$$

As $f(u) \ge r_0 u$ in Ω , we have then

$$(\lambda_1 - \lambda r_0) \int_{\Omega} \varphi_0 u dx \ge 0.$$

Recalling that φ_0 and u are positive in Ω , the lemma is proved.

Combining these two lemmas, we can claim

Theorem 2.3. — There exists a critical value $\lambda^* \in (0, \infty)$ for the parameter λ , such that for any $\lambda > \lambda^*$, no solution exists for the problem (P_{λ}) while for any $\lambda \in (0, \lambda^*)$, a unique minimal solution u_{λ} exists for (P_{λ}) . Furthermore the mapping $\lambda \mapsto u_{\lambda}$ is increasing with λ .

It is natural to ask if we can determine the exact value of λ^* and what happens when $\lambda = \lambda^*$. Before considering these two questions, we show another characterization of the minimal solution u_{λ} , its stability. A solution u of (P_{λ}) is called stable if and only if the linearized operator associated to the equation, $-\Delta - \lambda f'(u)$ is nonnegative. More precisely,

(2)
$$\lambda \int_{\Omega} f'(u) \varphi^2 dx \leq \int_{\Omega} |\nabla \varphi|^2 dx, \text{ for any } \varphi \in H^1_0(\Omega).$$

Theorem 2.4. — Let $\lambda \in (0, \lambda^*)$, the minimal solution u_{λ} is the unique stable solution of (P_{λ}) .

Proof. — First we prove that u_{λ} is stable. If it is not true, the first eigenvalue η_1 of $-\Delta - \lambda f'(u_{\lambda})$ is negative, then there exists an eigenfunction $\psi \in H_0^1(\Omega)$ such that

$$-\Delta \psi - \lambda f'(u_{\lambda})\psi = \eta_1 \psi$$
 in Ω , $\psi > 0$ in Ω .

Consider $u^{\varepsilon} = u_{\lambda} - \varepsilon \psi$, a direct calculation gives

$$-\Delta u^{\varepsilon} - \lambda f(u^{\varepsilon}) = -\eta_1 \varepsilon \psi - \lambda \left[f(u_{\lambda} - \varepsilon \psi) - f(u_{\lambda}) + \varepsilon f'(u_{\lambda}) \psi \right] = \varepsilon \psi \left[-\eta_1 + o_{\varepsilon}(1) \right].$$

Since $\eta_1 < 0$, then $-\Delta u^{\varepsilon} - \lambda f(u^{\varepsilon}) \ge 0$ in Ω for $\varepsilon > 0$ small enough. Otherwise, using Hopf's lemma, we know that $u_{\lambda} \ge C\psi$ in Ω for some C > 0. Thus $u^{\varepsilon} \ge 0$ is a super solution of (P_{λ}) for $\varepsilon > 0$ small enough. As before, we can get a solution u such that $u \le u^{\varepsilon}$ in Ω , which contradicts the minimality of u_{λ} . So $\eta_1 \ge 0$.

Now we prove that (P_{λ}) has at most one stable solution. Suppose the contrary, there exists another stable solution $v \neq u_{\lambda}$. Define $\varphi = v - u_{\lambda}$, we get

$$\lambda \int_{\Omega} f'(v) \varphi^2 dx \le \int_{\Omega} |\nabla \varphi|^2 dx = -\int_{\Omega} \varphi \Delta \varphi dx = \lambda \int_{\Omega} [f(v) - f(u_{\lambda})] \varphi dx,$$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007

 \mathbf{so}

$$\int_{\Omega} \left[f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) \right] \varphi dx \ge 0.$$

By maximum principle, we know that $\varphi > 0$ in Ω . The convexity of f yields that the term in the bracket is non positive, so the only possibility is $f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) \equiv 0$ in Ω , which means f is affine over $[u_{\lambda}(x), v(x)]$ for any $x \in \Omega$. Thus $f(x) = \bar{a}x + b$ in $[0, \max_{\Omega} v]$ and we get two solutions u and v of $-\Delta w = \bar{a}w + b$. This implies that

$$0 = \int_{\Omega} u_{\lambda} \Delta v - v \Delta u_{\lambda} dx = b \int_{\Omega} (v - u_{\lambda}) dx = b \int_{\Omega} \varphi dx,$$

which is impossible since b = f(0) > 0 and φ is positive in Ω . So we are done.

An immediate consequence of Theorem 2.4 is

Proposition 2.5. — For any $\lambda \in (0, \lambda_1/a)$, (P_{λ}) has one and unique solution u_{λ} .

Proof. — Remark first $a = \sup_{\mathbb{R}_+} f'(t)$ by convexity of f. Thanks to the definition of λ_1 , it is clear that each solution is stable if $\lambda \in (0, \lambda_1/a)$, so we get the uniqueness by that for stable solution. For the existence, we can consider the minimization problem $\min_{H_0^1(\Omega)} J(u)$ where

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \lambda \int_{\Omega} F(u) dx$$

with

$$F(u) = \int_0^{u^+} f(s)ds, \quad u^+ = \max(u, 0).$$

If $\lambda \in (0, \lambda_1/a)$, there exist ε , A > 0 depending on λ such that $2\lambda F(t) \leq (\lambda_1 - \varepsilon)t^2 + A$ over \mathbb{R} . Thus J(u) is coercive, bounded from below and weakly lower semi-continuous in $H_0^1(\Omega)$, the infimum of J is reached then by a function $u \in H_0^1(\Omega)$, so also by $u^+ \in H_0^1(\Omega)$ since $J(u^+) \leq J(u)$. This critical point $u \geq 0$ of J gives a solution of (P_{λ}) .

2.2. Estimate of λ^* . — By Proposition 2.5, we know that $\lambda^* \ge \lambda_1/a$. The following result in [27] gives us more precise information for λ^* .

Theorem 2.6. — We have three equivalent assertions:

- (i) $\lambda^* = \lambda_1/a$.
- (ii) No solution exists for (P_{λ^*}) .
- (iii) $\lim_{\lambda\to\lambda^*} u_{\lambda} = \infty$ u.c. in Ω . (u.c. means "uniformly on each compact set")

Proof. — (i) implies (ii). If (P_{λ^*}) has a solution u, then $u_{\lambda} \leq u$ in Ω for any $\lambda \in (0, \lambda^*)$, using the monotonicity of $u_{\lambda}, u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ is well defined and u^* is clearly a stable solution of (P_{λ^*}) by limit. Consider the operator $G(u, \lambda) = -\Delta u - \lambda f(u)$, if the first eigenvalue η_1 of $-\Delta - \lambda^* f'(u^*)$ is positive, then we can apply the Implicit Function Theorem to get a solution curve in a neighborhood of λ^* , but this contradicts the definition of λ^* , so $\eta_1 = 0$. Thus, there exists $\psi \in H_0^1(\Omega)$ satisfying

(3)
$$-\Delta \psi - \lambda^* f'(u^*)\psi = 0 \text{ and } \psi > 0 \text{ in } \Omega.$$

SÉMINAIRES & CONGRÈS 15

312

Using φ_0 as test function and integrating by parts, we get

$$\int_{\Omega} \left[\lambda_1 - \lambda^* f'(u^*)\right] \psi \varphi_0 dx = 0.$$

As $\lambda_1 - \lambda^* f'(u^*) \ge 0$, we get $f'(u^*) \equiv a$ in Ω so that f(t) = at + b in $[0, \max_{\Omega} u^*]$. But b > 0 deduces that no positive solution in $H_0^1(\Omega)$ can exist for the equation $-\Delta u = \lambda_1 u + b\lambda_1/a$ (we can use again φ_0), so the hypothesis is not true.

(ii) implies (iii). Here we mention a result of Hörmander (see [22]) as follows: For a sequence of nonnegative super-harmonic functions $\{v_n\}$ in Ω , either v_n converges u.c. to ∞ ; or there exists a subsequence which converges in $L^1_{loc}(\Omega)$. We need just to prove that the second case cannot occur for u_{λ} . Suppose the contrary, there exist $u_k = u_{\lambda_k}$ which converges in $L^1_{loc}(\Omega)$ to u^* with $\lambda_k \to \lambda^*$. We claim that $||u_k||_2 \leq C$. If it is false, we define $u_k = l_k w_k$ with $||w_k||_2 = 1$ and $\lim_{k\to\infty} l_k = \infty$ (up to subsequence). Since $f(t) \leq at + f(0)$,

$$-\Delta w_k = \frac{\lambda_k f(u_k)}{l_k} \le a\lambda_k w_k + \frac{\lambda_k f(0)}{l_k} \le a\lambda_k w_k + C \text{ in } \Omega,$$

it is easy to see that w_k is bounded in $H_0^1(\Omega)$, so that up to a subsequence, w_k converges weakly in H_0^1 and strongly in L^2 to some $w \in H_0^1$. Meanwhile, $-\Delta w_k$ tends to zero in $L_{loc}^1(\Omega)$ since $f(u_k) \leq au_k + b$ and l_k tends to ∞ , this implies $-\Delta w = 0$ in Ω . Hence $w \equiv 0$, which is impossible because $||w||_2 = \lim_{k \to \infty} ||w_k||_2 = 1$. So $\{u_k\}$ is bounded in $L^2(\Omega)$, hence in $H_0^1(\Omega)$ by equation. We prove readily that u^* is a solution of (P_{λ^*}) which contradicts (ii).

(iii) implies (ii). Any solution u of (P_{λ^*}) should satisfy $u \ge u_{\lambda}, \forall \lambda < \lambda^*$.

 $(ii) \oplus (iii)$ implies (i). Clearly $\lim_{\lambda \to \lambda^*} ||u_\lambda||_2 = \infty$. Take $u_\lambda = l_\lambda w_\lambda$ with $||w_\lambda||_2 = 1$, then we have a subsequence w_k which converges weakly in H_0^1 , strongly in L^2 and almost everywhere to $w \ge 0$. Moreover, in the sense of distribution,

$$-\Delta w = -\lim_{D'(\Omega)} \Delta w_k = \lim \frac{\lambda_k f(l_k w_k)}{l_k} = \lambda^* a w \ge \lambda_1 w \quad \text{a.e.}$$

Taking again φ_0 as test function, we see that the last inequality must be an equality, so $\lambda^* = \lambda_1/a$.

Remark that when $f(t) \ge at$ in \mathbb{R}_+ , we cannot get a solution for $\lambda = \lambda_1/a$ since f(t) > at in a neighborhood of 0 (using always φ_0 as test function), we obtain an important consequence of Theorem 2.6 and Proposition 2.5.

Corollary 2.7. If we have $\lim_{t\to\infty} f(t) - at = l \ge 0$, then $\lambda^* = \lambda_1/a$, and a unique solution u_{λ} exists for (P_{λ}) for $\lambda \in (0, \lambda^*)$ while no solution exists for $\lambda \ge \lambda^*$.

Moreover, the following result is established in [27].

Proposition 2.8. If $\lim_{t\to\infty} f(t) - at = l < 0$, then $\lambda_1/a < \lambda^* < \lambda_1/r_0$. A unique solution $u^* = \lim_{\lambda\to\lambda^*} u_{\lambda}$ exists for (P_{λ^*}) . Furthermore, for any $\lambda \in (\lambda_1/a, \lambda^*)$, we have a second solution v_{λ} for (P_{λ}) , such that v_{λ} tends u.c. to ∞ in Ω when $\lambda \downarrow \lambda_1/a$.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007