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Abstract
Let U(�) be the enveloping algebra of a semi-simple Lie algebra �. Very

little is known about the nature of AutU(�). However, if G is a finite subgroup
of AutU(�) then very general results of Lorenz-Passman and of Montgomery
can be used to relate SpecU(�) to SpecU(�)G. As noted by Alev-Polo one
may read off the Dynkin diagram of � from SpecU(�) and they used this to
show that U(�)G could not be again the enveloping algebra of a semi-simple
Lie algebra unless G is trivial. Again let U be the minimal primitive quotient of
U(�) admitting the trivial representation of �. A theorem of Polo asserts that
if UG is isomorphic to a similarly defined quotient of U(�′) : �′ semi-simple,
then � ∼= �′. However in this case one cannot say that G is trivial.

The main content of this paper is the possible generalization of Polo’s
theorem to other minimal primitive quotients. A very significant technical
difficulty arises from the Goldie rank of the almost minimal primitive quotients
being > 1. Even under relatively strong hypotheses (regularity and integrality
of the central character) one is only able to say that the Coxeter diagrams of
� and �′ coincide. The main thrust of the proofs is a systematic use of the
Lorenz-Passman-Montgomery theory and the known very detailed description
of PrimU(�). Unfortunately there is a severe lack of good examples. During
this work some purely ring theoretic results involving Goldie rank comparisons
and skew-field extensions are presented. A new inequality for Gelfand-Kirillov
dimension is obtained and this leads to an interesting question involving a
possible application of the intersection theorem.

Résumé
Soit U(�) l’algèbre enveloppante d’une algèbre de Lie semi-simple �. On sait

très peu de choses sur AutU(�). Néanmoins, si G désigne un sous-groupe fini
de AutU(�), alors des résultats généraux de Lorenz-Passman et Montgomery
relient SpecU(�) à SpecU(�)G. Alev et Polo ont observé qu’on peut lire le
diagramme de Dynkin de � sur SpecU(�) et ils en ont déduit que U(�)G ne
peut être isomorphe à l’algèbre enveloppante d’une algèbre de Lie que si G est
trivial. Soit U le quotient primitif minimal de U(�) admettant la représentation
triviale de �. D’après un théorème de Polo, si UG est isomorphe à un quotient
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de U(�′) : �′ semi-simple, alors � ∼= �′. Mais dans ce cas on ne peut affirmer
que G est trivial.

Le contenu principal de ce papier est une possible généralisation du résultat
de Polo à d’autres quotients primitifs minimaux. Une difficulté technique
significative provient du fait que la dimension de Goldie peut alors être > 1.
Même sous des hypothèses relativement fortes (régularité et intégralité du
caractère central) on peut seulement dire que les diagrammes de Coxeter de �
et �′ coincident. Les preuves sont basées sur une utilisation systématique de la
théorie de Lorenz-Passman et Montgomery et la connaissance très détaillée de
PrimU(�). Malheureusement, il y a un manque sévère d’exemples. Dans ce
travail, on présente quelques résultats de théorie des anneaux concernant des
comparaisons de rangs de Goldie et des extensions de corps gauches. On obtient
une nouvelle inégalité pour la dimension de Gelfand-Kirillov qui conduit à une
question intéressante concernant une application du théorème d’intersection.

1 Introduction

1.1. Let � be a complex semisimple Lie algebra and U(�) its enveloping algebra.
Let G be a finite subgroup of AutU(�). A remarkable recent result of J. Alev and P.
Polo [AP, Thm.1] shows that U(�)G cannot be again the enveloping algebra of some
possibly different semisimple Lie algebra �′ unless G is trivial. Again let Uρ (resp.
Vρ) be the minimal primitive quotient of U(�) (resp. U(�′)) admitting the trivial
representation of � (resp. �′) and G a finite subgroup of AutUρ. Polo [P, Thm.7.1]
has shown that if UG

ρ
∼= Vρ then � ∼= �′.

1.2. The proof of the above results uses some general results on finite group
actions (see Section 2) and some knowledge of PrimU(�). However the proofs are
not particularly difficult and need relatively little from these two theories.

1.3. The aim of this paper is to generalize Polo’s theorem to arbitrary (regular)
central characters. At present the only interest for doing this is that the problem
becomes very significantly harder and we need practically all that is known on the
two theories discussed in 1.2. The obvious critique is that we know of no non-trivial
examples of such finite group actions. Yet for example take � of type B2 (resp.
G2) with �2 (resp. �3) ⊂ AutU(�) acting via scalar multiplication on short root
vectors. Then the maximal completely prime ideal P associated to the 4 (resp. 6)
dimensional coadjoint orbit [J1] is �2 (resp. is �3) stable and “accidentally” the
fixed subalgebra is isomorphic to a minimal primitive quotient of U(��(2) × ��(2))

(resp. U(��(3))).

1.4. In Section 2 we review some general results on finite group actions and in
particular the Montgomery bijection. In Section 3 we develop some comparison
results on Goldie rank, particularly with respect to the additivity principle. In
Section 4 we show that the isomorphism UG

λ
∼= Vµ (where λ, µ are dominant,
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regular elements of the appropriate Cartan subalgebras) implies that the (relative)
Coxeter diagrams pertaining to Uλ and Vµ are isomorphic (Theorem 4.20). Unlike
the situation encountered in the special case of Polo’s theorem we are not able to say
that G orbits in SpecUλ are trivial (which also ”trivializes” Montgomery’s bijection).
In Section 5 we relate λ, µ through an additivity principle (Theorem 5.16). However
we are not able to say that the (relative) Dynkin diagrams pertaining to Uλ and Vµ

are isomorphic. This question is examined in Section 6 where we show that it cannot
be resolved by passage to rings of fractions and analysis of Goldie rank except in
what we call the indivisible Goldie rank case (Theorem 6.7). This occurs for example
in Polo’s situation and leads to a refinement of that result. I would like to thank the
referee for some remarks and corrections.

2 Finite Group Actions on Rings

2.1. Let B be a ring, G a finite subgroup of AutB and A := BG the fixed ring. A
number of remarkable very general results relating SpecB to SpecA derive from the
work of G. Bergman and I.M. Isaacs [BI], M. Lorenz and D.S. Passman [LP] and S.
Montgomery [M2]. We detail what we need of this theory below. It will be assumed
here and throughout this paper that |G| �= 0 in B. We remark that in applications
A,B are assumed noetherian and then the resulting weaker versions of these results
partly go further back.
2.2. It is clear that G acts on SpecB which is hence a disjoint union of G orbits
which are in turn finite sets. Given P ∈ SpecB we denote by O(P ) the G orbit
containing P . Then I(P ) :=

⋂
Pi∈O(P )

Pi, or simply I, is G invariant and so it is
natural to consider IG which is a semiprime ideal [BI] of A. Note however that
IG = PG

i = Pi ∩ A for all Pi ∈ O(P ). If P, P ′ ∈ SpecB lie in the same G orbit we
write P ∼ P ′. Obviously

Lemma — The following are equivalent

(i) I(P ) ⊃ I(P ′).

(ii) For all Pi ∈ O(P ) there exists P ′j ∈ O(P ′) such that Pi ⊃ P ′j .

(iii) For all P ′i ∈ O(P ′) there exists Pj ∈ O(P ) such that Pj ⊃ P ′i .

We write O(P ) ≥ O(P ′) when one of these hold.
2.3. Define the group ring BG to be the free B module on generators g ∈ G with
multiplication (bg, b′g′) = (bg(b′), gg′) where b′ 
→ g(b′) denotes the action of G on
B.
Set e = 1

|G|

∑
g∈G g which is an idempotent of BG. After a classical result of

Jacobson (see [LP, Lemma 4.5] for example) the map ϕ : Q 
→ eQe is an order
isomorphism of {Q ∈ SpecBG | e �∈ Q} onto SpecA. Extend ϕ to a bijection
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of semiprime ideals. Define an equivalence relation ∼ on SpecA by p ∼ p′ if
ϕ−1(p) ∩ B = ϕ−1(p′) ∩ B and let C(p) denote the equivalence class containing
p. Set I(p) =

⋂
p′∈C(p) p

′.

2.4. There are three key facts which lead to the Montgomery isomorphism [M2,
Sect.3], namely

(i) For all Q ∈ SpecBG there exists P ∈ SpecB such that Q ∩B = I(P ).

(ii) Qi ∈ SpecBG is minimal over I(P )G⇐⇒ Qi ∩B = I(P ). Moreover there are
finitely many such Qi and

⋂n
i=1Qi = I(P )G.

(iii) If an ideal J of BG strictly contains a prime Q then J ∩B � Q ∩B.

With the exception of the very last statement of (ii), these are due in their most
general form to Lorenz and Passman [LP, Lemma 4.2, Thm. 1.3, Thm. 1.2].

In (ii) choose m ∈ � and order the Qi so that e ∈ Qi ⇐⇒ i > m. Taking
Q = ϕ−1(p) : p ∈ SpecA it follows from (ii) that C(p) = {ϕ(Qi) : i ≤ m} and
ϕ−1(p) ∩A =

⋂m
i=1 ϕ(Qi). In particular we note the

Lemma — C(p) is the set of minimal primes over ϕ−1(p) ∩A.

2.5. The above result immediately leads [M2, 3.5 (3)] to a partial analogue of 2.2
namely

Lemma — The following are equivalent

(i) ϕ−1(p) ∩B ⊃ ϕ−1(p′) ∩B.

(ii) For each pi ∈ C(p) there exists p′j ∈ C(p′) such that pi ⊃ p′j.

Proof. Assume (i). Then ϕ−1(pi) ⊃
⋂n′

j=1Q
′
j and so pi contains some ϕ(Q′j).

We write C(p) ≥ C(p′) when one of these hold. For our purposes it is a significant
technical difficulty that we have no analogue of 2.2 (iii).
2.6. From 2.4 (i) and 2.4 (ii) one immediately obtains [M2, Thm. 3.4] the

Theorem — The map p 
→ O(P ), where I(P ) = ϕ−1(p) ∩ B factors to an order
isomorphism Φ of SpecA/ ∼ onto SpecB/ ∼.

2.7. It is clear that primes of SpecB in the same G orbit have the same height. By
2.4 (iii) it follows [M2, Prop. 3.5] that equivalent primes of SpecA are incomparable
and have the same height. Moreover

Lemma — One has htp = htP given P ∈ Φ(p).

2.8. Whilst ϕ−1(I(P )G) = I(P )G it is not quite obvious if this implies that the
inclusion BI(P )GB ⊂ I(P ) is an equality. Fortunately we shall only need the

Lemma — The minimal primes over BI(P )GB are the Pi ∈ O(P ).

Proof. If P ′ is a minimal prime over BI(P )GB then so are its G translates and
I(P ′) ⊃ BI(P )GB. Consequently I(P ′)G ⊃ I(P )G. Then I(P ′) ⊃ I(P ) from 2.6 or
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directly from 2.4. Then P ′ contains some Pi ∈ O(P ). Conversely BI(P )GB ⊂ I(P )

so P ′ is contained in some Pj ∈ O(P ).

3 Goldie Rank Comparison

3.1. We use some fairly standard methods to compare various Goldie ranks. In
this we retain the hypotheses and notation of Section 2 except that B is assumed
semisimple artinian. This implies (see for example [M1, Cor. 0.2 and Thm. 1.15])
the correspond ing properties for BG and then for A.

3.2. Observe that a left BG submodule of B is just a left ideal which is G stable.

Lemma — A left ideal L of B is G stable (resp. and minimal) if and only if it takes
the form Be with e ∈ A idempotent (resp. and minimal).

Proof. Let L′ be a BG stable complement of L in B. Then e is obtained as the image
of 1 ∈ B under the projection onto L defined by the decomposition B = L ⊕ L′.
Conversely right multiplication gives an algebra anti-isomorphism A = BG ∼

−→

EndBGB which restricts to an anti-isomorphism K := eAe
∼
−→ EndBGBe. Yet K is

a skew-field if and only if e is minimal.

3.3. Let M be a left BG module.

Lemma — Suppose AnnAM ∈ SpecA. Then the multiplication map θ : B ⊗A

MG →M is injective.

Proof. Let e be a minimal idempotent of A such that eM �= 0 and set K = eAe.
The hypothesis on AnnAM implies that B ⊗A MG = Be⊗K eMG.

Suppose kerθ �= 0. Since Be is a simple BGmodule by 3.2 and EndBGBe = K one
may apply the Jacobson density theorem [H, Thm. 2.1.4] to obtain m ∈ eMG \ {0}

for which Be⊗m ⊂ ker θ. Then em = 0 which is absurd.

3.4. Let M be a left BG module. One may give B′ := EndBM a G-algebra
structure through the action ψ 
→ g.ψ, ∀ g ∈ G,ψ ∈ EndBM by (g.ψ)(m) =

g(ψ(g−1m)), ∀m ∈ M . Then g(ψ(bm)) = (g.ψ)(g(b)(gm)). Set A′ = B′G. Then
A′, B′ are also semisimple artinian rings.

Lemma — Assume that A,B,A′, B′ are all simple and that MG �= 0. Then
rkB/rkA = rkB′/rkA′.

Proof. Take m ∈ MG \ {0}. Then AnnBm is a BG submodule of B and so of
the form Be′ for some idempotent e′ ∈ A \ {1}. Let e ≤ 1 − e′ be a minimal
idempotent of A. Since Be is a simple BG module by 3.2 we obtain an isomorphism
Be

∼
−→ Bem. In particular Bem is a simple BG submodule ofM . Now EndBM = B′

so EndBGM = B′G = A′. Since A′ is assumed simple, it follows that M is an
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