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Abstract
A remarkable sequence of polynomials is considered. These polynomials in

q describe in particular the number of solution to the equation X2 = 0 in
triangular n × n matrices over a field �q with q elements. They have at least
three other important interpretations and a conjectural explicit expression in
terms of the entries of the Catalan triangle.

Résumé
Nous considérons une suite remarquable de polynômes. Ces polynômes en

q décrivent en particulier le nombre de solutions de l’équation X2 = 0 dans les
matrices n× n sur un corps �q ayant q elements. Ils ont au moins trois autres
interprétations importantes et une forme explicite conjecturale en termes des
entrées du triangle de Catalan.

Recently the first author has discovered a remarkable sequence of polynomials in
one variable. We give below several different definitions which apparently lead to
the same sequence of polynomials.

1. We start with the set An(�q) of solutions to the equation

X2 = 0(1)

in n × n upper-triangular matrices with elements from �q. The cardinality of this
set is, as we show below, a polynomial in q which will be denoted by An(q).

Unfortunately, we do not know any direct recurrence relation between these
polynomials. So, we will split the set An(�q) into subsets consisting of matrices
of a given rank r. The corresponding quantity is denoted by Arn(q) so that we have
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An(q) =
∑
r≥0A

r
n(q). The new quantities satisfy the simple recurrence relations

(see [1])

Ar+1n+1(q) = qr+1 ·Ar+1n (q) + (qn−r − qr) · Arn(q); A0n+1(q) = 1(2)

which imply in particular that they are polynomials in q . One can express Arn(q)

in terms of q-Hermite polynomials. Namely, in [1] the following equality is proved

(2z)n =
∑
r

Arn(q) · q
r(r−n) ·Hn−2r(z; q

−1),(3)

where Hn(x; q) is the q-Hermite polynomial defined by

Hn(x; q) :=

n∑
k=0

[
n

k

]
q

ei(n−2k)θ, x = cos θ,

and

[
n

k

]
q

is the Gauss q-binomial coefficient:

[
n

k

]
q

=
(1− q)(1 − q2) · · · (1− qn)

(1− q) · · · (1− qk) · (1− q) · · · (1 − qn−k)
.

Using the orthogonality of Hermite polynomials with respect to a suitable inner
product or by direct computations using (3) we can find Arn(q) for small n and see
that they are polynomials of general type. However in the An(q) the dramatical
cancelation takes place so that only a few monomials survive. Here are the first
dozen of the polynomials An(q):

A0 = 1,

A1 = 1,

A2 = q,

A3 = 2q
2 − q,

A4 = 2q
4 − q2,

A5 = 5q
6 − 4q5,

A6 = 5q
9 − 5q7 + q5,

A7 = 14q
12 − 14q11 + q7,

A8 = 14q
16 − 20q14 + 7q12,

A9 = 42q
20 − 48q19 + 8q15 − q12,

A10 = 42q
25 − 75q23 + 35q21 − q15,

A11 = 132q
30 − 165q29 + 44q25 − 10q22.
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There are many remarkable features of these polynomials which hit the eye when
one looks at the table. Let us mention here only the following three:

(i) An has only [n+33 ] non-zero monomials.

(ii) Their coefficients have alternating signs.

(iii) The highest coefficients are the well known Catalan numbers.

We postpone the further discussion on coefficients and degrees of monomials till
section 3.

2. The second source of polynomials is the so called generalized Euler-Bernoulli
triangle. It was introduced in [2] in connection with the study of coadjoint orbits of
the triangular matrix group over �q. The elements of this triangle are polynomials
ek,l in two variables t and q. Here we are interested in the special case when t = q.
It is also more convenient to deal with the “restricted” triangle. Namely, we throw
away the side entries, divide all the rest by q− 1 and reenumerate remaining entries
starting with the term b0,0 . The new triangle thus obtained has elements {bk,l(q)},

k ≥ 0, l ≥ 0 where bk,l =
e
k+1,l+1

(q,q)

q−1 . One can easily show that bk,l satisfy

bk,l = q−1bk−1, l+1 + (q
l+1 − ql)bl, k−1 for k > 0;(4)

b0,l = qlbl−1,0 for l > 0; b0,0 = 1.

In fact, we can take (4) as the definition of the restricted Euler-Bernoulli triangle.
Now put Bn(q) := bn−1,0(q), n > 0, B0(q) = 1. This is our second sequence of
polynomials. The computation shows that polynomials Bn(q) coincide with An(q)

for 0 ≤ n ≤ 26 leaving no doubt that they are equal for all n.

3. Define the Catalan triangle {ck,l}, k ≥ 1, |l| ≤ k, k − l ≡ 0 (mod 2), by

ck,l = sign l for k = 1; ck,l = ck−1,l−1 + ck−1,l+1 for k ≥ 2.(5)

This is the same rule as for the Pascal triangle, but with different initial condition.
One can easily see that

ck,k−2s =

(
k − 1

s

)
−

(
k − 1

s− 1

)
.(6)

It is convenient to put ck,l = 0 for |l| > k in agreement with (6).

Remark that the numbers cn := c2n+1,1, n ≥ 0, are the ordinary Catalan
numbers1: 1, 1, 2, 5, 14, 42, 132, ... . It is pertinent to remark that for a positive l the
entry ck,l of the Catalan triangle is the dimension of the irreducible representation of

1Which are usually defined by the recurrence cn+1 =
∑n
k=0 ck · cn−k and the initial conditions

c0 = c1 = 1.
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the symmetric group Sk−1 corresponding to the partition (2
k−l
2 , 1l−1). In particular,

the ordinary Catalan number cn corresponds to the rectangular diagram (2n).
Here are the first few lines of the Catalan triangle:

−1 1

−1 0 1

−1 − 1 1 1

−1 − 2 0 2 1

−1 − 3 − 2 2 3 1

−1 − 4 − 5 0 5 4 1

−1 − 5 − 9 − 5 5 9 5 1

−1 − 6 − 14 − 14 0 14 14 6 1

−1 − 7 − 20 − 28 − 14 14 28 20 7 1

One can see immediately that the entries of the Catalan triangle are related to
the coefficients of the polynomials An(q) or Bn(q). More detailed observation is as
follows. Put

Cn(q) =
∑
s

cn+1,s · q
n2

4 +
1−s2

12 ,(7)

where the sum is taken over all integers s ∈ [−n− 1, n+ 1] which satisfy

s ≡ n+ 1 (mod 2), s ≡ (−1)n (mod 3).

Then the first 26 polynomials Cn(q) will coincide with An(q) and Bn(q).

The definition (7) is very convenient for practical computations. It allows to find
dozens of Cn(q) even without computer. The most elementary expressions we obtain
by joining (6) and (7) and considering separately cases of even and odd n. They look
as follows:

C2n(q) =

[n3 ]∑
j=[−n+13 ]

[(
2n

n− 3j

)
−

(
2n

n− 1− 3j

)]
· qn

2−3j2−j ,

C2n+1(q) =

[n3 ]∑
j=[−n+23 ]

[(
2n+ 1

n− 3j

)
−

(
2n+ 1

n− 3j − 1

)]
· qn

2+n−3j2−2j .

For large n we have the asymptotic expressions

C2n(q) ∼ cn · q
n2 ·
∑
j≥0

(1 + 6j)q−3j
2−j,

C2n+1(q) ∼ cn+1 · q
n2+n ·

∑
j≥0

(1 + 3j)q−3j
2−2j ,
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where ∼ means that the ratio goes to 1 when n goes to infinity.
4. Now we consider the most interesting and sophisticated definition of our
polynomials. For any compact group G we denote by ζG(s) the sum

ζG(s) :=
∑
λ∈Ĝ

d(λ)−s.(8)

Here Ĝ denotes the set of (equivalence classes of) unitary irreducible representations
of G and d(λ) is the dimension of any representation which belongs to the class λ.
In particular, for G = SU(2) we obtain the classical Riemann ζ-function.

One can show that the series (8) converges for any compact semisimple Lie group
provided that the real part of s is big enough.

For a finite group G we have

ζG(−2) = #G, ζG(0) = #Ĝ.

Let now Gn(�q) denote the group of all n × n upper-triangular matrices with
elements from the finite field �q and with 1’s on the main diagonal. This is a finite

nilpotent group of order q
n(n−1)
2 . We define the fourth sequence of polynomials in q

by

Dn(q) := ζGn(�q)(−1) =
∑

λ∈Ĝn(�q)

d(λ).(9)

In fact, it is not clear a priori that Dn(q) are polynomials in q. The most natural
proof of it (which is not yet accomplished) would be the following. The representation
theoretic meaning of Dn(q) is the dimension of the so called model space for the
group G = Gn(�q): a G-module which contains all irreducible representations with
multiplicity one. If we could find a good geometric construction of this module – e.g.
as the space of functions or sections of a line bundle over some G-manifold X over
�q – then Dn(q) would be the number of �q-points of X . And for nice manifolds the
latter quantity is a polynomial in q.

Another interpretation of Dn(q) – the dimension of a maximal commutative C∗-
subalgebra in the group algebra of Gn(�q). Here again, the explicit construction
of such a subalgebra would be of much help for understanding the nature of the
quantity Dn(q).

Just now we can only say that for n ≤ 6 (i.e. for the cases where the classification
of unirreps for Gn(�q) is known) we have the equality Dn(q) = An(q).
5. We finally consider polynomials defined by coadjoint orbits. We can consider
our group Gn(�q) as the group of �q-points of an algebraic group over �. As such it
has a Lie algebra, adjoint and coadjoint representations.

Société Mathématique de France


