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Abstract

The subject began with Huygens’s theory of wave fronts as
envelopes of smoother waves, and subsequent work by Euler,
d’Alembert and Riemann. Singularities at the wave fronts were
not understood before Hadamard’s theory of “partie finie” at
the beginning of this century. Contributions by Herglotz and
Petrovsky and the theory of distributions created in the forties by
Laurent Schwartz greatly illuminated the study of singularities
of solutions of hyperbolic PDE’s. Solutions of Cauchy’s problem
given by Hadamard, Schauder, Petrovsky, and the author are dis-
cussed. More recently, microlocal analysis, initiated by M. Sato
and L. Hörmander led to important advances in understanding
the propagation of singularities. Functional analysis together
with distributions and microlocal analysis are expected to be
useful well into the next century.

Résumé

Le sujet débute avec la théorie de Huygens qui considère les
fronts d’onde comme des enveloppes d’ondes plus régulières, et
se poursuit par les travaux de Euler, d’Alembert et Riemann.
Les singularités des fronts d’onde n’ont pas été comprises avant
la théorie de la � partie finie � de Hadamard au début de ce
siècle. Les contributions de Herglotz, Petrovsky et dans les an-
nées quarante, la théorie des distributions de Laurent Schwartz
ont éclairé l’étude des singularités des solutions des EDP hyper-
boliques. On passe en revue les solutions au problème de Cauchy
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données par Hadamard, Schauder, Petrovsky et l’auteur. Plus ré-
cemment, l’analyse microlocale de M. Sato et L. Hörmander a
permis de grandes avancées dans la compréhension de la propa-
gation des singularités. L’analyse fonctionnelle, les distributions
et l’analyse microlocale seront certainement des outils importants
du prochain siècle.

1. Introduction

The first example of a hyperbolic equation was the wave equation

utt − ∆u = 0.

In one space variable n, the solutions describe free movements with velocity
1 in a perfectly elastic medium. A nonlinear version appears in one dimen-
sional hydrodynamics. Riemann’s 1860 treatment was later completed by the
Rankine-Hugoniot jump conditions and conditions of entropy. Further exam-
ples of hyperbolic equations and systems appeared in the theory of electricity
and magnetism and elasticity.

Originally, the adjective hyperbolic marked the connection between the
wave equation and a hyperbolic conoid. When applied to general partial dif-
ferential operators or systems the term now indicates that one of the variables
is time t = t(x) and that the solutions of the system describe wave propa-
gation with finite velocity in all directions. More precisely, the solution u of
Cauchy’s problem with no source function and with data given for t = const.
should have the property that the value of u at a point depends continuously
on the values of the data and their derivatives in a compact set. For an oper-
ator P (D) with constant coefficients this means that there is a fundamental
solution E(x), i.e. a distribution such that P (D)E(x) = δ(x), whose support
is contained in a proper, closed cone.

In the first half of the twentieth century, local existence by classical ana-
lysis of solutions to Cauchy’s problem for hyperbolic equations with smooth
data was the main problem. Soon after, functional analysis and distributions
came into play and the introduction around 1970 of pseudodifferential op-
erators and microlocal analysis of distributions was followed by a period of
important results on the propagation of singularities, both free and under re-
flection in a boundary. Later this study was extended to nonlinear equations.
Another question, latent during the period, is the problem of global existence
of solutions for nonlinear equations close to linear ones. It took a new turn
with the study of blow-up times by Fritz John.
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Only a sample of the main results can be mentioned here. In particular, I
refrain from the various hyperbolic aspects of hydrodynamics and the theory
of scattering in spectral analysis.

The development of the theory of hyperbolic equations from 1900 cannot
be understood without a review of some of the main results from the time
before 1900. It is done here briefly under the heading of Prehistory.1

2. Prehistory

With three space variables the wave equation describes free propagation of
light in physical space with velocity 1. For this equation, Poisson proved what
in modern terms amounts to the fact that the wave operator ✷ = ∂2

t −∆ has
a fundamental solution

E(t, x) =
1

2π
H(t)δ(t2 − |x|2)

with support on the forward lightcone t = |x|. It was then only too easy to
believe this to be a general phenomenon, for instance that the equations for
the propagation of light in media with double refraction follow the same rule
known under the name of Huygens principle:2 all light from a point-source is
concentrated to the surface given by the rules of geometric optics. Both G.
Lamé and Sonya Kovalevski made this mistake till the use of Fourier analysis
proved that the existence of diffuse light outside such surfaces is the rule and
the contrary an exception (for a historical review, see [Gårding 1989]).

A fundamental solution of the wave operator for two space variables was
found by Volterra and, at the turn of the century, Tedone tried the general
case, but could only construct what amounts to sufficiently repeated integrals
with respect to time of purported fundamental solutions. Behind these dif-
ficulties is the fact that, in contrast to the properties of Laplace’s operator,
the fundamental solutions of the wave operator are distributions with singu-
larities outside the pole which get worse as the number n of space variables
increases. Before the theory of distributions, this was a formidable difficulty.

3. “Partie finie”

The obstacle which stopped Tedone, was surmounted by Hadamard in his
theory of partie finie, found before 1920 and exposed in [Hadamard 1932].

1The remarks and notes of Hadamard’s book 1932give a fuller account.
2Huygens’s minor premise according to Hadamard [1932].
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His operator is the wave operator with smooth, variable coefficients and has
the form

(3.1) L(x, ∂x) =
∑

ajk(x)∂j∂k + lower terms

where the metric form
∑
ajkξjξk has Lorentz signature +,−...−. A direction

for which the inverse metric form is positive, zero or negative is said to be
time-like, light-like and space-like respectively. Surfaces with time-like and
space-like normals are said to be space-like and time-like respectively. The
light rays are the geodesics of length zero. A time function t(x) with t′(x)
time-like is given.

The light rays with a positive time direction issued from a point y consti-
tute the forward light cone Cy with its vertex at y. Inside this light cone, the
fundamental solution with its pole at y has the same form as in the elliptic
case

(3.2) f(x, y)d(x, y)2−n

where f is a smooth function and d is the geodesic distance between x and
y. The difficulty is that d(x, y) = 0 when x ∈ Cy. The partie finie can
be said to be a renormalization procedure which extends this formula for
n odd to a distribution which is also a fundamental solution. For n even,
Hadamard uses what is called the method of descent. In the work by M.
Riesz [1949] the exponent 2 − n of (3.2) is replaced by α − n where α is
a complex paramater. At the same time f is made to depend on α and a
denominator Γ(α/2)Γ((α + 2 − n)/2) is introduced. The stage is then set for
an analytical continuation with respect to α. In this way and for selfadjoint
operators L, Riesz constructs kernels of the complex powers of L.

In his case, Hadamard could give a complete local solution of Cauchy’s
problem with data on a space-like surface, but the corresponding mixed prob-
lem with reflection in a time-like surface presented insurmountable difficulties.

4. Friedrichs-Lewy energy density, existence proofs

by Schauder and Petrovsky

The discovery of Friedrichs and Lewy [1928] that ∂1u✷u with u real is the
divergence of a tensor with a positive energy density on space-like surfaces
produced both uniqueness results and a priori energy estimates, decisive for
the later development.

A great step forward was taken by Schauder [1935, 1936a,b] who proved
local existence of solutions of Cauchy’s problem and also the mixed problem
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for quasilinear wave operators. The method is to use approximations star-
ting from the case of analytic coefficients and analytic data. The success
of these papers depends on stable energy estimates derived from the energy
tensor and the use of the fact that square integrable functions with square
integrable derivatives up to order n form a ring under multiplication.3

Only a year after Schauder, Petrovsky [1937] extended his results for
Cauchy’s problem to strongly hyperbolic systems, in the simplest case

(4.1) ut +
n∑
1

Ak(t, x)uk +Bu = v, uk = ∂u/∂xk,

and the corresponding quasilinear versions. Here the coefficients are square
matrices of order m and the strong hyperbolicity with respect to the time
variable t means that all m velocities c given by

(4.2) det(cI +
∑

ξkAk(t, x)) = 0

are real and separate for all real ξ �= 0. The method is that of Schauder
starting from the analytic case, but Petrovsky had to find his own energy
estimate. For this he used the Fourier transform, but the essential point is to
be found in thirty rather impenetrable pages. Note that if the system (4.1) is
symmetric, i.e., the matrices Ak are Hermitian symmetric, then (4.2) holds
except that the velocities need not be separate. Moreover,

∂t|u(t, x)|2 +
∑

∂k(Aku(t, x), u(t, x)) = O(|u(t, x)|2 + |u(t, x)||v(t, x)|)

under suitable conditions on the coefficients. Hence the proper energy density
on t = const is here simply |u(t, x)|2dx.

Petrovsky’s paper was followed by a study [Petrovsky 1938] of conditions
for the continuity of Cauchy’s problem for operators whose coefficients depend
only on time.

5. Fundamental solutions, Herglotz and
Petrovsky

Herglotz [1926-28] and Petrovsky [1945] used the Fourier transform to con-
struct fundamental solutions E(P, t, x) for constant coefficient homogeneous
differential operators P = P (∂t, ∂x) of degree m which are strongly hyperbolic
with respect to t. Every such fundamental solution E is analytic outside a

3Soon after, Sobolev proved that one gets a ring also when n is replaced by (n + 1)/2
when n is odd and by (n + 2)/2 when n is even.
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