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Abstract

Hermann Weyl’s papers on the representation of semisimple Lie
groups (1925-26) stand out as landmarks of twentieth century
mathematics. The following essay focuses on how Weyl came to
write these papers. It offers a reconstruction of his intellectual
journey from intense involvementwith the mathematics of general
relativity to that of the representation of groups. In particular
it calls attention to a 1924 paper by Weyl on tensor symmetries
that played a pivotal role in redirecting his research interests. The
picture that emerges illustrates how Weyl’s broad philosophically
inclined interests inspired and informed his creative work in pure
mathematics.

Résumé

Les articles de Hermann Weyl sur la représentation des groupes
de Lie semi-simples (1925-26) apparaissent comme des étapes ma-
jeures des mathématiques du vingtième siècle. En analysant ce
qui a amené Weyl à écrire ces articles, cet essai présente une re-
construction de sa démarche intellectuelle, depuis les mathéma-
tiques de la relativité générale jusqu’à celles des représentations
de groupes. Il attire notamment l’attention sur l’article de 1924
sur les symétries tensorielles, pivot de la réorientation de ses do-
maines de recherche. On voit aussi comment les larges intérêts et
les motivations philosophiques de Weyl ont inspiré et enrichi sa
créativité en mathématiques pures.
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998



70 T. HAWKINS

Dieudonné once wrote that “progress in mathematics results, most of the
time, through the imaginative fusion of two or more apparently different top-
ics” [Dieudonné 1975, p. 537]. One of the most brilliant examples of progress
by fusion is provided by Herman Weyl’s celebrated papers on the representa-
tion of semisimple Lie groups (1925-1926). For in them he fashioned a theory
which embraced I. Schur’s recent work (1924) on the invariants and represen-
tations of the n-dimensional rotation group, which was conceived within the
conceptual framework of Frobenius’ theory of group characters and represen-
tations, and E. Cartan’s earlier work (1894–1913) on semisimple Lie algebras,
which was done within the framework of Lie’s theory of groups and had been
unknown to Schur. Moreover, in fashioning his theory of semisimple groups,
Weyl drew on a host of ideas from such historically disparate areas as Frobe-
nius’ theory of finite group characters, Lie’s theory, tensor algebra, invariant
theory, complex function theory (Riemann surfaces), topology and Hilbert’s
theory of integral equations. Weyl’s papers were thus a paradigm of fusion,
and they exerted a considerable influence on subsequent developments. They
stand out as one of the landmarks of twentieth century mathematics.

It is not my purpose here to describe the rich contents of these remarkable
papers nor to analyze their influence. This has been done by Chevalley and
Weil [1957], by Dieudonné [1976], and, above all, by Borel [1986]. I wish to
focus instead on how Weyl came to write these remarkable papers. In this
connection Weyl wrote:

“for myself I can say that the wish to understand what really is the
mathematical substance behind the formal apparatus of relativity
theory led me to the study of representations and invariants of
groups ...”[Weyl 1949, p. 400].

My goal is to attempt to explain what Weyl meant by this remark, that
is, to reconstruct the historical picture of his intellectual journey from his
involvement with the mathematics of general relativity to that of the repre-
sentation of semisimple Lie groups. In particular, I want to call attention
to a paper by Weyl [1924a], which in my opinion adds a fullness and clarity
to the picture that would otherwise be lacking. The picture that emerges
illustrates how Weyl’s broad philosophically inclined interests — in this in-
stance in theoretical physics — inspired and informed his creative work in
pure mathematics.1

1For another such instance, see [Scholz 1995] where Weyl’s interest in Fichte’s philosophy
is related to his approach to the geometry of manifolds.
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The Space Problem

Weyl’s involvement with general relativity began in 1916, when, at age 31, he
returned from military service to his position at the Eidgenössische Technische
Hochschule (ETH) in Zürich. “My mathematical mind was as blank as any
veteran’s,”he later recalled, “and I did not know what to do. I began to study
algebraic surfaces; but before I had gotten far, Einstein’s memoir came into
my hand and set me afire.”2 By the summer of 1917 Weyl was lecturing on
general relativity at the ETH. These lectures formed the starting point for his
classic book, Raum, Zeit, Materie, which went through four editions during
1918–23,3 and spawned many collateral publications by Weyl aimed at further
developing the ideas and implications of his lectures. One of the outcomes of
Weyl’s reflections on general relativity was his introduction of what he called
a “purely infinitesimal geometry.”4

Weyl became convinced that Riemannian geometry, including the quasi
Riemannian geometry of an indefinite metric ds2 =

∑
ij gijdxidxj ,

gij = gij(x1, . . . , xn), on which Einstein’s theory was based, was not a con-
sistently infinitesimal geometry. That is, in Riemannian geometry, a vector
v = (dx1, . . . , dxn) in the tangent plane at point P of the manifold could only
be compared with a vector w = (dy1, . . . , dyn) in the tangent plane at point
Q in the relative sense of a path-dependent parallel transport from P to Q,
but the lengths of v and w were absolutely comparable in the sense that

|v|
|w| =

√∑
i,j gij(P )dxidxj∑
i,j gij(Q)dyidyj

.

These considerations led Weyl to a generalization of Riemannian geometries in
which the lengths of v and w are not absolutely comparable. As in Riemannian
geometry a nondegenerate quadratic differential form ds2 of constant signa-
ture is postulated but metric relations are determined locally only up to a pos-
itive calibration (or gauge) factor λ and so are given by ds2 =

∑
ij λgijdxidxj .

Here λ varies from point to point in such a way that the comparison of the
lengths of v at P and w at Q is also in general a path-dependent process.5

2Quoted by S. Sigurdsson [1991, p. 62] from Weyl’s unpublished “Lecture at the Bicen-
tennial Conference” (in Princeton).

3There were actually five editions, but the second (1919) was simply a reprint of the first
[Scholz 1994, p. 205n].

4See Scholz [1994, 1995] for a detailed account of the historical context and evolution of
Weyl’s ideas on this theory during 1917–23 .

5For a complete definition of Weyl’s geometry see [Scholz 1994, p. 213] and for a contem-
porary formulation see [Folland 1970]. Weyl’s geometry represented the first of a succession
of gauge theories that has continued into present-day physics [Vizgin 1989, p. 310].
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Although Weyl’s geometry was motivated by the above critique of Rie-
mannian geometry, he discovered that he could use its framework to develop
a unified field theory, that is, a theory embracing both the gravitational and
the electromagnetic field. Hilbert had been the first to devise a unified the-
ory within the framework of general relativity in 1915. Weyl’s theory was
presented in several papers during 1918–19 and in the third edition (1919)
of Raum, Zeit, Materie. Einstein admired Weyl’s theory for its mathemat-
ical brilliance, but he rejected it as physically impossible. Although Weyl
respected Einstein’s profound physical intuition and was accordingly disap-
pointed by the negative reaction to his unified theory, Einstein’s arguments
did not convince him that his own approach was wrong. His belief in the cor-
rectness of his theory was bolstered by the outcome of his reconsideration, in
publications during 1921–23, of the “space problem” first posed by Helmholtz
in 1866. It was in connection with this problem that Weyl first began to
appreciate the value of group theory for investigating questions of interest to
him involving the mathematical foundations of physical theories.

In 1866 Helmholtz sought to deduce the geometrical properties of space
from facts about the existence and motion of rigid bodies. He concluded
that the distance between points (x, y, z) and (x + dx, y + dy, z + dz) is√
dx2 + dy2 + dz2 and that space is indeed Euclidean. He returned to the

matter in 1868, however, after learning from the work of Riemann and Bel-
trami about geometries of constant curvature. Using the properties of rigid
bodies he had singled out earlier, he argued that Riemann’s hypothesis that
metric relations are given locally by a quadratic differential form is actually
a mathematical consequence of these facts. Later, in 1887, Poincaré obtained
Helmoltz’s results for two-dimensional space by applying Lie’s theory of groups
and utilizing, in particular, the consideration of Lie algebras. Lie himself con-
sidered the problem in n dimensions by means of the consideration of Lie
groups and algebras in 1892. The Lie-Helmholtz treatment of the space prob-
lem, however, was rendered obsolete by the advent of general relativity since,
as Weyl put it:

“Now we are ... dealing with a four-dimensional [continuum] with
a metric based not on a positive definite quadratic form but rather
one that is indefinite. What is more, we no longer believe in the
metric homogeneity of this medium — the very foundation of the
Helmholtzian metric — since the metric field is not something
fixed but rather stands in causal dependency on matter” [Weyl
1921a, p. 263].

Following the Helmholtz-Lie tradition, Weyl conceived of space (includ-
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ing therewith the possibility of space-time) as an n-dimensional differentiable
manifold M with metric relations determined by the properties of congru-
ences which are conceived in terms of groups. Thus at each point P ∈ M the
rotations at P are assumed to form a continuous group of linear transforma-
tions GP , and since the volume of parallelepipeds is assumed to be preserved
by rotations, the GP are taken as subgroups of SL (TP (M)). Metrical re-
lations in a neighborhood U of P are then based on the assumption that all
rotations at P ′ ∈ U can be obtained from a single linear congruence trans-
formation A taking P to P ′ by composition with the rotations at P ; that
is, every T ′ ∈ GP ′ is of the form T ′ = ATA−1 so that GP ′ = AGPA

−1.
By “passing continuously” from P to any point Q of the manifold M, Weyl
was led to the assumption that all the groups GP are congruent to a group
G ⊂ SL(n) with Lie algebra g ⊂ sl(n). Thus, whereas in the Lie-Helmholtz
treatment of the space problem, the homogeneity of space entails the identity
of the rotation groups at diverse points, in Weyl’s formulation the rotation
groups have differing “orientations,” although they share the same abstract
Lie algebra.

Within this mathematical context Weyl stipulated two postulates: (1) the
nature of space imposes no restriction on the metrical relationship; (2) the
affine connection is uniquely determined by the metrical relationship. His
interesting mathematical interpretation of these two postulates led to the
conclusion that the Lie algebra g must possess the following properties:
a) For all X ∈ g, tr X = 0 (i.e., g ⊂ sl(n,R));
b) dim g = 1

2n(n− 1);
c) For any X1, . . . ,Xn ∈ g with matrix form Xk = (a(k)

ij ) with regard to some
basis, if Col i of Xj = Col j of Xi for all i, j = 1, ..., n, then Xi = 0 for all
i = 1, ..., n.

In the fourth edition of Raum, Zeit, Materie, where Weyl first presented
his analysis of the space problem [Weyl 1921a, §18], he pointed out that the Lie
algebras gQ of all orthogonal groups with respect to a nonsingular quadratic
form Q satisfy (a)–(c) and he conjectured as “highly probable” the following
theorem which he had confirmed for n = 2, 3:

Theorem 1. — The only Lie algebras satisfying (a)–(c) are the orthogonal
Lie algebras gQ corresponding to a nondegenerate quadratic form Q.

Weyl’s conjectured theorem thus implied the locally Pythagorean nature of
space. Weyl pointed out that when g does correspond to an orthogonal Lie
algebra, the quadratic form Q is only determined up to a constant of pro-
portionality [Weyl 1921a, p. 146]. Although he did not say it explicitly at
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