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TRACTOR BUNDLES
FOR IRREDUCIBLE PARABOLIC GEOMETRIES

by

Andreas Čap & A. Rod Gover

Abstract. — We use general results on tractor calculi for parabolic geometries that
we obtained in a previous article to give a simple and effective characterisation of ar-
bitrary normal tractor bundles on manifolds equipped with an irreducible parabolic
geometry (also called almost Hermitian symmetric– or AHS–structure in the literat-
ure). Moreover, we also construct the corresponding normal adjoint tractor bundle
and give explicit formulae for the normal tractor connections as well as the funda-
mental D–operators on such bundles. For such structures, part of this information is
equivalent to giving the canonical Cartan connection. However it also provides all the
information necessary for building up the invariant tractor calculus. As an applica-
tion, we give a new simple construction of the standard tractor bundle in conformal
geometry, which immediately leads to several elements of tractor calculus.

Résumé (Fibrés des tracteurs pour des géométries paraboliques irréductibles)
Nous utilisons les résultats sur les calculs tractoriels pour des géométries parabo-

liques, obtenus dans un article précédent, afin de donner une caractérisation simple
et effective pour des fibrés des tracteurs normaux arbitraires sur des variétés mu-
nies d’une géométrie parabolique irréductible (appelée également dans la littérature
structure presque hermitienne symétrique). De plus, on construit le fibré des trac-
teurs normal associé et on donne des formules explicites pour les connexions sur le
fibré de tracteurs normal et pour le D–opérateur fondamental sur de tels fibrés. Pour
de telles structures, une partie de cette information est équivalente à la donnée de la
connexion de Cartan canonique. Néanmoins, elle donne également toute l’information
nécessaire pour construire le calcul invariant des tracteurs. Comme application, on
donne une nouvelle construction simple du fibré des tracteurs standard en géométrie
conforme, qui donne lieu immédiatement à plusieurs éléments de calculs tractoriels.
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1. Tractor bundles and normal tractor connections

Riemannian and pseudo-Riemannian geometries are equipped with a canonical
metric and the metric (or Levi-Civita) connection that it determines. For this reason,
in the setting of these geometries, it is natural to calculate directly with the tangent
bundle, its dual and the tensor bundles. On the other hand for many other interesting
structures such as conformal geometries, CR geometries, projective geometries and
quaternionic structures the situation is not so fortunate. These structures are among
the broad class of so-called parabolic geometries and for the geometries within this
class there is no canonical connection or metric on the tangent bundle or the tensor
bundles. Nevertheless for these structures there is a class of natural vector bundles
which do have a canonical connection. These are the tractor bundles and the calculus
based around these bundles is a natural analog of the tensor bundle and Levi-Civita
connection calculus of Riemannian geometry.

Tractor calculus has its origins in the work of T.Y. Thomas [11] who developed key
elements of the theory for conformal and projective geometries. Far more recently this
was rediscovered and extended in [1]. Since this last work tractor calculus has been
further extended and developed and the structures treated explicitly include CR and
the almost Grassmannian/quaternionic geometries (see for example [6, 7, 8, 9] and
references therein). Included in these works are many applications to the construction
of invariant operators and polynomial invariants of the structures.

In our recent paper [3] we have introduced the concepts of tractor bundles and
normal tractor connections for all parabolic geometries. Besides showing that from
these bundles one can recover the Cartan bundle and the normal Cartan connection
of such a geometry, we have also developed an invariant calculus based on adjoint
tractor bundles and the so–called fundamental D–operators for all these geometries.
Moreover, in that paper a general construction of the normal adjoint tractor bundle
in the case of irreducible parabolic geometries is presented. While this approach,
based on the adjoint representation of the underlying Lie–algebra, has the advantage
of working for all irreducible parabolic geometries simultaneously, there are actually
simpler tractor bundles available for each concrete choice of the structure. In fact,
all previously known examples of tractor calculi as mentioned above are of the latter
type. It is thus important to be able to recognise general normal tractor bundles for
a parabolic geometry and to find the corresponding normal tractor connections.

The main result of this paper is theorem 1.3 which offers a complete solution for the
case of irreducible parabolic geometries. For a given structure and representation of
the underlying Lie algebra, this gives a characterisation of the normal tractor bundle,
as well as a univsersal formula for the normal tractor connection. On the one hand
this may be used to identify a bundle as the normal tractor bundle and then compute
the normal tractor connection. On the other hand the theorem specifies the necessary
ingredients for the construction of such a bundle. It should be pointed out, that the
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results obtained here are independent of the construction of the normal adjoint tractor
bundles for irreducible parabolic geometries given in [3]. From that source we only
use the technical background on these structures.

We will show the power of this approach in section 2 and 3 by giving an alternative
construction of the most well known example of a normal tractor bundle, namely the
standard tractors in conformal geometry. Besides providing a short and simple route
to all the basic elements of conformal tractor calculus, this new construction also
immediately encodes some more advanced elements of tractor calculus.

1.1. Background on irreducible parabolic geometries. — Parabolic geomet-
ries may be viewed as curved analogs of homogeneous spaces of the form G/P , where
G is a real or complex simple Lie group and P ⊂ G is a parabolic subgroup. In general,
a parabolic geometry of type (G,P ) on a smooth manifold M is defined as a prin-
cipal P–bundle over M , which is endowed with a Cartan connection, whose curvature
satisfies a certain normalization condition. This kind of definition is however very
unsatisfactory for our purposes. The point about this is that these normal Cartan
connections usually are obtained from underlying structures via fairly complicated
prolongation procedures, see e.g. [4]. Tractor bundles and connections are an al-
ternative approach to these structures, which do not require knowledge of the Cartan
connection but may be constructed directly from underlying structures in many cases.
Hence, in this paper we will rather focus on the underlying structures and avoid the
general point of view via Cartan connections.

Fortunately, these underlying structures are particularly easy to understand for the
subclass of irreducible parabolic geometries, which correspond to certain maximal
parabolics. The point is that for these structures, one always has a (classical first
order) G0–structure (for a certain subgroup G0 ⊂ G) on M , as well as a class of
preferred connections on the tangent bundle TM . While both these are there for
any irreducible parabolic geometry, their role in describing the structure may vary
a lot, as can be seen from two important examples, namely conformal and classical
projective structures.

In the conformal case, the G0–structure just is the conformal structure, i.e. the
reduction of the frame bundle to the conformal group, so this contains all the in-
formation. The preferred connections are then simply all torsion free connections
respecting the conformal structure, i.e. all Weyl connections. On the other hand, in
the projective case, the group G0 turns out to be a full general linear group, so the
first order G0–structure contains no information at all, while the projective structure
is given by the choice of a class of preferred torsion free connections.

The basic input to specify an irreducible parabolic geometry is a simple real Lie
group G together with a so–called |1|–grading on its Lie algebra g, i.e. a grading of
the form g−1⊕g0⊕g1. It is then known in general (see e.g. [12, section 3]) that g0 is a
reductive Lie algebra with one dimensional centre and the representation of g0 on g−1
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is irreducible (which is the reason for the name “irreducible parabolic geometries”).
Moreover, any g–invariant bilinear form (for example the Killing form) induces a
duality of g0–modules between g−1 and g1. Next, there is a canonical generator E,
called the grading element , of the centre of g0, which is characterised by the fact that
its adjoint action on gj is given by multiplication by j for j = −1, 0, 1.

Having given these data, we define subgroups G0 ⊂ P ⊂ G by

G0 = {g ∈ G : Ad(g)(gi) ⊂ gi for all i}
P = {g ∈ G : Ad(g)(gi) ⊂ gi ⊕ gi+1 for i = 0, 1},

where Ad denotes the adjoint action and we agree that gi = {0} for |i| > 1. It is easy
to see that G0 has Lie algebra g0, while P has Lie algebra p = g0 ⊕ g1. An important
result is that P is actually the semidirect product of G0 and a vector group. More
precisely, one proves (see e.g. [4, proposition 2.10]) that for any element g ∈ P there
are unique elements g0 ∈ G0 and Z ∈ g1 such that g = g0 exp(Z). Hence if we define
P+ ⊂ P as the image of g1 under the exponential map, then exp : g1 → P+ is a
diffeomorphism and P is the semidirect product of G0 and P+.

If neither g nor its complexification is isomorphic to sl(n,C) with the |1|–grading

given in block form by
(

g0 g1

g−1 g0

)
, where the blocks are of size 1 and n − 1, then a

parabolic geometry of type (G,P ) on a smooth manifold M (of the same dimension
as g−1) is defined to be a first order G0–structure on the manifold M , where G0 is
viewed as a subgroup of GL(g−1) via the adjoint action. We will henceforth refer to
these structures as the structures which are not of projective type.

On the other hand, if either g or its complexification is isomorphic to sl(n,C) with
the above grading, then this is some type of a projective structure, which is given
by a choice of a class of affine connections on M (details below). See [5, 3.3] for a
discussion of various examples of irreducible parabolic geometries.

Given a |1|–graded Lie algebra g, the simplest choice of group is G = Aut(g),
the group of all automorphisms of the Lie algebra g. Note that, for this choice of
the group G, P is exactly the group Autf (g) of all automorphism of the filtered Lie
algebra g ⊃ p ⊃ g1, while G0 is exactly the group Autgr(g) of all automorphisms of
the graded Lie algebra g = g−1⊕g0⊕g1. For a general choice of G, the adjoint action
shows that P (respectively G0) is a covering of a subgroup of Autf (g) (respectively
Autgr(g)) which contains the connected component of the identity. Note however,
that in any case the group P+ is exactly the group of those automorphisms ϕ of g

such that for each i = −1, 0, 1 and each A ∈ gi the image ϕ(A) is congruent to A
modulo gi+1 ⊕ gi+2.

In any case, as shown in [3, 4.2, 4.4], on any manifold M equipped with a parabolic
geometry of type (G,P ) one has the following basic data:
(1) A principal G0–bundle p : G0 → M which defines a first order G0–structure on
M . (In the non–projective cases, this defines the structure, while in the projective
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cases it is a full first order frame bundle.) The tangent bundle TM and the cotangent
bundle T ∗M are the associated bundles to G0 corresponding to the adjoint action
of G0 on g−1 and g1, respectively. There is an induced bundle End0 TM which is
associated to G0 via the adjoint action of G0 on g0. This is canonically a subbundle
of T ∗M ⊗ TM and so we can view sections of this bundle either as endomorphisms
of TM or of T ∗M .
(2) An algebraic bracket { , } : TM ⊗ T ∗M → End0 TM , which together with the
trivial brackets on TM ⊗ TM and on T ∗M ⊗ T ∗M , the brackets End0 TM ⊗ TM →
TM given by {Φ, ξ} = Φ(ξ) and End0 TM⊗T ∗M → T ∗M given by {Φ, ω} = −Φ(ω),
and the bracket on End0 TM ⊗ End0 TM → End0 TM given by the commutator of
endomorphisms of TM , makes TxM ⊕End0 TxM ⊕ T ∗

xM , for each point x ∈M , into
a graded Lie algebra isomorphic to g = g−1 ⊕ g0 ⊕ g1. (This algebraic bracket is
induced from the Lie algebra bracket of g.)
(3) A preferred class of affine connections on M induced from principal connections
on G0, such that for two preferred connections ∇ and ∇̂ there is a unique smooth one–
form Υ ∈ Ω1(M) such that ∇̂ξη = ∇ξη+{{Υ, ξ}, η} for all vector fields ξ, η on M . (In
the projective cases, the structure is defined by the choice of this class of connections,
while in the non–projective cases their existence is a nontrivial but elementary result.)
Moreover, there is a restriction on the torsion of preferred connections, see below.

There is a nice reinterpretation of (1) and (2): Define the bundle
−→A = A−1 ⊕

A0 ⊕A1 → M by A−1 = TM , A0 = End0 TM and A1 = T ∗M . Then the algebraic
bracket from (2) makes

−→A into a bundle of graded Lie algebras. Moreover, since
Ai is the associated bundle G0 ×G0 gi the definition of the algebraic bracket implies
that each point u0 ∈ G0 lying over x ∈ M leads to an isomorphism u0 : g → Ax of
graded Lie algebras. In this picture, the principal right action of G0 on G0 leads to
u0·g = u0 ◦ Ad(g).

There are a few important facts on preferred connections that have to be noted.
First, since they are induced from principal connections on G0, the algebraic brackets
from (2) are covariantly constant with respect to any of the preferred connections.
Second, the Jacobi identity immediately implies that {{Υ, ξ}, η} is symmetric in ξ and
η, so all preferred connections have the same torsion T ∈ Γ(Λ2T ∗M ⊗ TM). Hence,
this torsion is an invariant of the parabolic geometry. The normalisation condition
on the torsion mentioned above is that the trace over the last two entries of the map
Λ2TM ⊗ T ∗M → End0 TM defined by (ξ, η, ω) �→ {T (ξ, η), ω} vanishes. That is, in
the language of [3], the torsion is ∂∗–closed.

There are also a few facts on the curvature of preferred connections that we will
need in the sequel: Namely, if ∇ is a preferred connection, and R ∈ Γ(Λ2T ∗M ⊗
End0 TM) is its curvature, then by [3, 4.6] one may split R canonically as R(ξ, η) =
W (ξ, η) − {P(ξ), η} + {P(η), ξ}, where P ∈ Γ(T ∗M ⊗ T ∗M) is the rho–tensor and
W ∈ Γ(Λ2T ∗M⊗End0 TM) is called the Weyl–curvature of the preferred connection.
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