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Abstract. — We discuss conjectured relations between twistor theory and superstring
theory, built around the idea that time asymmetry is crucial. In the context of a
simple example, a number of techniques are described, which should shed light on
these conjectures.

Résumé (Dynamique du cône de lumière). — Nous étudions des relations conjecturées
entre la théorie des twisteurs et la théorie des supercordes, construites autour de l’idée
que l’asymétrie du temps est cruciale. Dans le cadre d’un exemple simple, un certain
nombre de techniques sont décrites qui devraient éclaircir ces conjectures.

1. Introduction

The twistor theory associated to flat spacetime may be summarized as follows [1–
5]. First the geometry. We start with a complex vector space T , called twistor space,
of four complex dimensions, equipped with a pseudo-hermitian sesquilinear form K

of signature (2, 2). For 1 ≤ n ≤ 4, denote by Gn the Grassmannian of all subspaces
of T of dimension n. Then we have a decomposition Gn =

⋃
p+q+r=n G(p,q,r), where

for each V ∈ Gn, p, q and r are non-negative integers such that p + q + r = n

and p ≤ 2 is the maximal dimension of a subspace of V on which K is positive
definite, whereas q ≤ 2 is the maximal dimension of a subspace of V on which K is
negative definite. Each G(p,q,r) is an orbit of the natural action of the pseudo-unitary
group U(K), associated to K, acting on Gn (U(K) is isomorphic to U(2, 2)). When
n = 1, we put PT = G1, PT + = G(1,0,0), P T− = G(0,1,0) and P N = G(0,0,1),
so PT = PT + ∪ P T− ∪ PN . PT is a complex projective three-space and P T±

are open submanifolds of P T , separated by the closed submanifold PN , which has
real dimension five. In the language of CR geometry, PN is the hyperquadric in
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complex projective three-space, with Levi form of signature (1, 1). When n = 2, the
decomposition of the four complex dimensional space CM = G2 has six pieces. Three
are open submanifolds: M++ = G(2,0,0), M−− = G(0,2,0) and M+− = G(1,1,0).
Another is a closed subset, of real dimension four: M = G(0,0,2). The other two,
M+ = G(1,0,0) and M− = G(0,1,0) each have real dimension seven and have M as
their boundary. The boundary of M++ is M+ ∪ M , of M−− is M− ∪ M and of
M+− is M+∪M−∪M . Each point of CM is a projective line in PT . Then M++,
M−−, M+−, M± and M are, respectively, the spaces of projective lines that lie
entirely in PT +, lie entirely in PT−, cross from PT + to P T−, touch PN at one
point and otherwise lie in PT±, lie entirely inside PN . G3 is isomorphic to dual
projective twistor space, the projective dual of PT and has three pieces, G(2,1,0),
G(1,2,0) and G(1,1,1).

The Klein correspondence embeds CM as a quadric hypersurface in the projective
space of Ω2T , the exterior product of T with itself. As such it inherits a natural
conformally flat complex holomorphic conformal structure. Two points of CM are
null related if and only if their corresponding lines in P T intersect. Then CM is
the complexification of M and the conformal structure of M is real and Lorentzian.
M is a conformal compactification of real Minkowski spacetime. If a specific point
I of M , is singled out, then on the complement MI of the null cone of I, M has
a canonical flat Lorentzian metric, and MI (of topology R4) may be regarded as
Minkowski spacetime.

With respect to the real Minkowski space MI , the imaginary part y, of the position
vector of a finite point of CM , is canonical. Then M++, M−−, M+−, M+ and
M− are the sets of all points of CM , for which y is respectively, past pointing
and timelike, future pointing and timelike, spacelike, past pointing and null, future
pointing and null.

Each point of P T (called a projective twistor) may be represented as a completely
null two-surface in CM . This surface intersects M , if and only if the projective
twistor lies in PN and then the intersection is a null geodesic. The induced mapping
from PN to the space of null geodesics in M turns out to be a natural isomorph-
ism, yielding the key fact that the space of null geodesics in M is naturally a CR

manifold, such that there is a one-to-one correspondence between points of M and
Riemann spheres embeddded in the CR manifold. The null cone of I, called scri, is
an asymptotic null hypersurface for the Minkowski spacetime. There are now three
different kinds of null cones: the null cone of a finite point (a point of MI), scri
itself, which has no finite points and the null cone of a point of scri, distinct from I.
This latter kind of cone intersects scri in a null geodesic and intersects MI in a null
hyperplane.

Analytically, we find that the information in solutions of certain relativistic field
equations on M or on CM is encoded in global structure in PT : for example, the
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first sheaf cohomology group of suitable domains in PT with coefficients in the sheaf
of germs of holomorphic functions on PT corresponds to the space of solutions of the
anti-self-dual Maxwell equations on the corresponding domain in CM . In particular
for the domains PT + and PT−, the solutions are global on M++ and M−− respect-
ively. For solutions in M only we use instead CR cohomology on subsets of PN .
This has the key advantage that non-analytic solutions are encompassed. If we pass
to suitable vector bundles over PT , or over PN , then we encode the information of
solutions of the anti-self-dual Yang-Mills equations. Also each holomorphic surface
in PT intersects PN in a three-space. This space gives rise to a shear-free null con-
gruence in Minkowski spacetime and all analytic shear free congruences are obtained
this way. Non-analytic shear-free null congruences can be constructed. In general,
they appear to be represented by holomorphic surfaces in either PT +, or PT−, that
extend to the boundary PN , but no further: such surfaces are said to be one-sided
embeddable.

Given this elegant theory for flat spacetime, it is natural to ask to extend the theory
to curved spacetime. Here a fundamental obstacle immediately arises, even for real
analytic spacetimes. The twistors in flat spacetime are interpreted as completely
null two-surfaces and it is easy to prove that such surfaces can exist, in the required
generality, if and only if the spacetime is conformally flat. In the language of the
Frobenius theorem, the twistor surfaces are described by a system of one-forms and
the integrability of the system forces conformal flatness. Penrose realized that if the
dimension was reduced by one, then the integrability problem would be overcome
and a twistor theory could then be constructed [3]. Specifically, the curved analogue
of the twistor distribution is integrable when restricted to the spin bundle over a
hypersurface in spacetime, so each hypersurface in spacetime has an associated twistor
theory.

If the spacetime is asympotically flat, then there are attached to the spacetime,
two asymptotic null cones, one in the future and one in the past, called scri plus and
scri minus, respectively. Newman and Penrose were able to completely analyze the
twistor structures of these spaces, called H-spaces [6, 7, 8, 10, 12]. Each projective
twistor is represented in the surface by an appropriate complex null geodesic curve (if
pa is tangent to the curve and if na is the normal to the surface, then necessarily the
outer product p[anb] is either self-dual or anti-self-dual; for twistors this outer product
must be anti-self-dual; the self-dual alternative gives the “dual” or “conjugate” twistor
space; the information in each space is the same). Then the space of such curves is
three complex dimensional, as in the flat case. The space is fibered over a complex
projective one-space (a Riemann sphere) and in favorable circumstances, there is a
four complex parameter set of sections of the fibering (so each section is a Riemann
sphere embedded in the projective twistor space) [21]. This gives a curved analogue
of the space CM of flat twistor space. Just as for flat space, a complex conformal
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structure is determined by the incidence condition for the holomorphic sections and
a preferred holomorphic metric may be defined in this conformal class. This metric is
then shown to be vacuum and to have anti-self-dual Weyl curvature. Finally there is
a non-projective twistor space obtained by propagating a spinor along the projective
twistor curve and this non-projective space has a pseudo-Kähler structure, K, whose
associated metric is Ricci flat. We then have curved analogues of some of the various
spaces G(p,q,r) discussed above. In particular, the vanishing of K determines a CR

hypersurface in the twistor space, which, in turn, may be interpeted as the bundle of
null directions over the asymptotic null hypersurface of the spacetime.

The success of the asymptotic twistor theory of Newman and Penrose raises the
question of extending the theory to the finite realm. Here one notes that the asymp-
totic twistor theory is still rather special in that first, scri is a null hypersurface
and secondly, that it is shearfree. For a null hypersurface the hypersurface twistor
curves are complex null geodesics in the surface, if and only if the surface is shearfree.
Geometrically, shearfreeness amounts to the fact that the complexification of scri is
foliated by a one complex parameter set of completely null two-surfaces, which can-
not exist away from infinity except for certain hypersurfaces in algebraically special
spacetimes. Nevertheless one might anticipate that some sort of deformation of the
Newman-Penrose theory is required. Indeed, for twistor spaces associated to spacelike
hypersurfaces, this is the case, if analyticity is assumed [9].

In recent seminars, I have suggested that the Newman-Penrose picture breaks
down, at least, for the properly constructed twistor spaces of finite null cones [17–
20], the mechanism for the breakdown being provided by the Sachs equations [32].
These ideas are detailed in the appendix here. Instead I suggest that the twistor
spaces of these null cones will be complex manifolds more like those that appear in
string theory and that these twistor spaces will then provide a link between the string
theory and spacetime theory. Specifically in string theory, complex manifolds with
isolated compact Riemann spheres (or surfaces of higher genus) play an important
role. Essentially, I am saying that the spheres of string theory are to be identified
conceptually and theoretically with isolated spheres in the null hypersurface twistor
spaces. String theorists assert that their theory incorporates gravity. To the limited
extent that I understand their theory, I would respond that they may well have
gravitational degrees of freedom in the theory, in the sense for example that they
consistently construct models of gravitating particles, but they do not yet incorporate
all the subtleties of the Einstein theory and that it may be that a more complete
theory will require a unification of string-theoretic, twistor-theoretic and other ideas.
In the new theory, time asymmetry would be natural. Also even “local” physics would
depend via the structure of null cone hypersurface twistor spaces on the global past of
the locality. This would apparently mean that there would be very subtle deviations
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from PCT invariance in local physics, the main point here being that the global
structure of past null cones differs from that of future null cones.

In trying to analyze whether or not these conjectures are in any way sensible, we
should be careful to frame the discussion properly. Also we should realize that we
are in a no-lose situation. Any progress in this analysis, whether positive or negative,
relative to these conjectures, will result in substantial gains in knowledge. Certainly
global questions come into play; for example C3 and complex projective three-space
differ only at “infinity”, but the former has no embedded Riemann spheres, whilst
the latter has a four-parameter set. Also, as in flat space, there are many kinds
of null cone hypersurfaces; the theory of each kind will have its own flavor. The
list includes the past and future null cones of a finite point; null cones avoiding
singularities, null cones of points in or on horizons; cosmological null cones; “virtual”
null cones: scri plus, scri minus, horizons, null cones of singular points, of points
of scri, of points beyond scri. Unfortunately, when trying to construct examples,
one is practically forced to use analytic spacetimes, whereas the key to the Einstein
theory is its hyperbolic nature, which truly can be exposed only in a non-analytic
framework. So one must instead adopt the following philosphical schema: when
working with analytic spacetimes, avoid any construction that has no hope of a non-
analytic analogue; also avoid bringing in any information which in a non-analytic
situation would violate causality. In particular, this entails that we should emphasize
the role of the CR twistor manifolds at every opportunity.

The present work gives the first example of the twistor theory of null hypersurfaces,
for the case of a shearing null hypersurface. Even in the very simple case, discussed
here, the computations are somewhat non-trivial and at various steps were aided
by the Maple algebraic computing system. The title of this work refers to the idea
prevalent in quantum field theory that dynamics proceeds along the null cone, progress
in a timelike direction being made as a zigzag along various null cones, alternately
future and past pointing. If my conjectures have any sense, the analogous idea in
string theory is chains or ensembles of manifolds of Calabi-Yau type, connected by
webs of mirror symmetries. Here I confine myself to working out some of the relevant
formulas of the twistor theory. In particular an example of twistor scattering is
constructed, I believe for the first time in the literature. The scattering in question
depends essentially on the spacetime not being conformally flat. Two null cones
intersect in a two-surface. A twistor curve of one cone meets the two-surface at one
point. The attached spinor to the curve then naturally gives rise to a new twistor
curve on the second null cone. This gives rise to a local diffeomorphism between the
two twistor spaces, this diffeomorphism being the Zitterbewegung.

It seems possible, although I do not yet have a proof, that this scattering will
be feasible even in the non-analytic case, at least for suitable spacetimes and thus
be consistent with my overall philosophy. This would entail that the twistor CR
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