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HOLONOMIC AND SEMI-HOLONOMIC GEOMETRIES

by

Gregor Weingart

Abstract. — Holonomic and semi-holonomic geometries modelled on a homogeneous
space G/P are introduced as reductions of the holonomic or semi-holonomic frame
bundles respectively satisfying a straightforward generalization of the partial differ-
ential equation characterizing torsion–free linear connections. Under a suitable regu-
larity assumption on the model space G/P we establish an equivalence of categories
between Cartan geometries and semi-holonomic geometries modelled on G/P .

Résumé(Géométries holonomes et semi–holonomes). — On introduit les géométries ho-
lonomes et semi–holonomes modelées sur un espace homogène G/P comme réductions
des fibrés de repères holonomes et semi–holonomes vérifiant une généralisation de
l’équation aux dérivées partielles caractérisant les connexions linéaires sans torsion.
Sous certaines conditions de régularité sur l’espace modèle G/P , nous établissons
une équivalence de catégories entre les géométries de Cartan et les géométries semi–
holonomes modelées sur G/P .

1. Introduction

The study of geometric structures with finite dimensional isometry groups has ever
made up an important part of differential geometry and is intimately related with the
notions of connections and principal bundles, coined by Cartan in order to give an
interpretation of Lie’s ideas on geometry. Principal bundles are undoubtedly useful
in the study of geometric structures on manifolds, nevertheless one should not fail to
notice the problematic and somewhat paradox aspect of their use. In fact the frame
bundles of a manifold M are defined as jet bundles, with a single projection to M ,
say the target projection, but we have to keep track of the source projection, too.
From the point of view of exterior calculus on principal bundles there is a natural
way to work around this problem, needless to say it was Cartan who first treated the
classical examples of geometric structures along these lines of thought, which have by
now become standard. The paradox itself however remains and its impact is easily
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noticed when turning to more general geometric structures, say geometries modelled
on homogeneous spaces G/P .
Analysis on homogeneous spaces G/P is well understood and it is tempting to gen-

eralize this analysis to curved analogues of the flat model space G/P . In particular
the extension problem for invariant differential operators studied in conformal and
more general parabolic geometries only makes sense in this context. Cartan’s original
definition [C] of Cartan geometries as curved analogues of homogeneous spaces G/P
relies on the existence of an auxiliary principal bundle G on a manifoldM . Unless we
are content with studying pure Cartan geometries we need to discover the geometry
first in order to establish the existence of the principal bundle. In fact most Cartan
geometries arise via Cartan’s method of equivalence in the process of classifying un-
derlying geometric structures interesting in their own right. In this respect the work
of Tanaka [T] has been most influential, who introduced parabolic Cartan geometries
to classify regular differential systems with simple automorphism groups.
An alternative, but essentially equivalent definition of a curved analogue of a ho-

mogeneous space is introduced in this note. Holonomic and semi-holonomic geomet-
ries modelled on a homogeneous space G/P will be reductions of the holonomic or
semi-holonomic frame bundles GL dM or GL

d
M of M satisfying a suitable partial

differential equation, which is a straightforward generalization of the partial differen-
tial equation characterizing torsion–free linear connections as reductions of GL 2M
to the structure group GL 1

R
n ⊂ GL 2

R
n. The critical step in the formulation of

this partial differential equation is the construction of a map similar to

J : OR
n\GL 2

R
n −→ Jet10(OR

n\GL 1
R

n)

in Riemannian and

J : COR
n

� R
n∗\GL 2

R
n −→ Jet10(COR

n\GL 1
R

n)

in conformal geometry. The classical construction of J applies only for affine geomet-
ries, i. e. geometries modelled on quotients of the form P �u/P , where the semidirect
product is given by some linear representation of P on u. In non–affine geometries
the straightforward map GL d+1

R
n −→ Jet10GL

d
R

n fails in general to descend to
quotients. In particular this problem arises in split geometries, which are of partic-
ular interest in differential geometry. Split geometries are modelled on homogeneous
spaces G/P , such that some subgroup U ⊂ G acts simply transitively on an open,
dense subset of G/P . A couple of talks at the conference in Luminy centered about
parabolic geometries, which form a class of examples of split geometries interesting in
its own right due to the existence of the Bernstein–Gelfand–Gelfand resolution [BE],
[CSS].
Without loss of generality we will assume that the model space G/P is connected,

i. e. every connected component of G meets P . However G/P will have to satisfy
a technical regularity assumption in order to be able to construct holonomic and
semi-holonomic geometries modelled on G/P . Choose a linear complement u of p in
g = u ⊕ p and consider the corresponding exponential coordinates of G/P :

exp : u −→ G/P, υ �−→ eυ P
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The action of the isotropy group P of exp(0) = eP in these exponential coordinates
gives rise to a group homomorphism Φu : P −→ GL ku from P to the group GL ku

of k–th order jets of diffeomorphisms of u into itself fixing 0 ∈ u. We require that
the image of P is closed in GL ku for all k ≥ 1, a condition evidently independent of
the choice of u. This regularity assumption is certainly met by all pairs of algebraic
groups, but it does not hold in general, perhaps the simplest counterexample is the
affine geometry modelled on R � (C ⊕ C)/R with R acting on C ⊕ C by an irrational
line in S1 ×S1. In general neither of the homomorphisms P −→ GL ku, k ≥ 1, needs
be injective, however the intersection of all their kernels is a closed normal subgroup
P∞ of P called the isospin group of P in G. Alternatively P∞ can be characterized
as the kernel of the homomorphism G −→ Diff G/P .
In the absence of isospin P∞ = {1} Morimoto [M] constructed a P–equivariant

embedding of a Cartan geometry G on a manifold M into the infinite frame bundle
G −→ GL

∞
M . The main result of the current note is a generalization of this result,

which provides a complete classification of Cartan geometries G on M modelled on
G/P in terms of semi-holonomic geometries of sufficiently high order:

Theorem 1.1. — Consider a connected homogeneous quotient G/P of a finite dimen-
sional Lie group G by a closed subgroup P such that the image of P in GL ku is
closed for all k ≥ 1. There exists an integer d ≥ 0 depending only on the pair of Lie
algebras g ⊃ p such that every Cartan geometry G on M is an isospin P∞–bundle
over a unique semi-holonomic geometry G/P∞ ⊂ GL

d+1
M of order d + 1 modelled

on G/P . The semi-holonomic geometry fixes the Cartan connection on G up to an
affine subspace of isospin connections.

Consequently in the absence of isospin P∞ = {1} there is a natural correspond-
ence between Cartan geometries and semi-holonomic geometries of order d+ 1 on M
establishing an equivalence of the respective categories. The actual proof of Theorem
1.1 is very simple once we forget everything we learned about the canonical connec-
tion etc. on frame bundles. The explanation for the need to introduce an auxiliary
bundle in the original definition of Cartan geometries seems to be that people clinged
to the concept of “canonical” translations, because it fitted so neatly with exterior
calculus, instead of taking the problematic aspect of principal bundles in geometry at
face value.
It is a striking fact that no classical example is known where the integer d in

Theorem 1.1 is different from d = 1 or d = 2. In fact the relationship between Cartan
geometries and holonomic geometries should become very interesting for examples
with d > 2. A partial negative result in this direction is given in Lemma 4.4 showing
that all examples with reductive G have d ≤ 2.
Perhaps the most important aspect of Theorem 1.1 is that it associates a classify-

ing geometric object and thus local covariants to any Cartan geometry without any
artificial assumptions on the model space G/P . In particular the techniques available
in the formal theory of partial differential equations or exterior differential systems
[BCG3] can be used to describe the space of local solutions to the partial differential
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equation characterizing holonomic and semi-holonomic geometries. The most ambi-
tious program is to derive the complete resolution of the space of local covariants and
we hope to return to this project in [W]. The methods and results of Tanaka [T]
and Yamaguchi [Y] for parabolic geometries will certainly find their place in the more
general context of split geometries.
In the following section we will review the fundamentals of jet theory with partic-

ular emphasis on the delicate role played by the translations in order to construct the
map J for all model spaces G/P . Moreover we will review the notion of torsion in
this section, because similar to the map J the most intuitive definition of torsion de-
pends on the choice of translations. This example is particularly interesting, because
it contradicts the usual definition of torsion as the exterior derivative of the soldering
form and may serve as a sample calculation showing the way the translations affect
the relevant formulas in exterior calculus.
Using the map J we set up the partial differential equation characterizing holo-

nomic and semi-holonomic reductions of the holonomic and semi-holonomic frame
bundles GL dM and GL

d
M respectively. In particular we will provide stable ver-

sions of these partial differential equations, a problem we thought about at the time of
the conference in Luminy. Moreover we will discuss what kind of connections are as-
sociated with holonomic and semi-holonomic reductions. In the final section we prove
Theorem 1.1 and thus establish an equivalence of categories between the category of
Cartan geometries and the category of semi-holonomic geometries of sufficiently high
order.
I would like to thank the organizers of the conference for inviting me to Luminy

and giving me extra time to finish this note. Moreover the discussions with Jan Slovák
and Lukáš Krump in Luminy turned my attention to the local covariant problem in
pure Cartan geometry. My special thanks are due to Tammo Diemer, who introduced
me to conformal geometry and the related extension problem for invariant differential
operators.

2. Jet Theory and Principal Bundles

The language of jet theory will dominate the following sections, most of the ideas
and definitions will emerge from this way of expressing calculus. Since there are
numerous text books on this subject it is needless to strive for a detailed introduction,
see [KMS], [P] for further reference. For the convenience of the reader we want to
recall the basic concepts and definitions of jet theory and discuss its interplay with
the theory of principal bundles. In particular we want to point out the problematic
aspect of using principal bundles in the description of jets of geometric structures on
manifolds. In order to get a well defined projection from a principal bundle to the
base manifold we have to fix say the target of a jet, however we have to keep track of
its source, too.
Perhaps the cleanest way around this problem is to discard principal bundles and

turn to groupoid–like structures. In fact the description of geometric structures on
manifolds using groupoids or better Lie pseudogroups has a long history originating
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HOLONOMIC AND SEMI-HOLONOMIC GEOMETRIES 311

from Lie and predating the concept of principal bundles by decades, see [P] for an
enthusiastic and in parts rather polemical historical survey. On the other hand the
use of principal bundles has a tremendous advantage over the use of groupoids, we
really can do calculations without the need to resort to local coordinates and the
powerful algebraic machinery of resolutions by induced modules becomes available in
this context.
There is a standard recipe to deal with this dichotomy and it works remarkably

well in affine and other important geometries. Moreover it links neatly with exter-
ior calculus on principal bundles pioneered by Cartan. In this note we will explore
variants of the standard recipe depending in geometrical language on the choice of
translations. Although these variants may look somewhat artificial from the point of
view of exterior calculus they allow us to deal easily not only with affine but with
all split geometries. A striking example is Lemma 2.5, which essentially reproduces
the definition of torsion in Cartan geometries without any reference to connections
at all. The modifications in the definitions needed in general geometries modelled on
homogeneous spaces G/P will appear in [W].
The main object of study in jet theory is of course a jet, which is a generalization

of the concept of a Taylor series associated to a smooth map R −→ R to arbitrary
smooth maps between manifolds. Let u be a fixed real vector space and F some
differentiable manifold. Two smooth maps f : u −→ F and f̃ : u −→ F defined
in some neighborhood of 0 ∈ u are called equivalent f ∼ f̃ up to order k ≥ 0 if
f(0) = f̃(0) and their partial derivatives up to order k in some and hence every local
coordinate system of F about f(0) = f̃(0) agree in 0. The equivalence class of a
smooth map f up to order k is called the k–th order jet jetk0 f of f and the set of
all these equivalence classes is denoted by Jetk0 F := {jetk0 f | f : u −→ F }. For all
k ≥ l ≥ 0 there is a canonical projection

pr : Jetk0 F −→ Jetl0 F , jetk0 f �−→ jetl0 f

and the evaluation

ev : Jetk0 F −→ F , jetk0 f �−→ f(0)

which strictly speaking is a special case of the projection since we may identify
Jet00 F ∼= F . We will use a different notation for this special case nevertheless
to avoid the cumbersome indication of the source and target orders of the projec-
tions. If the manifold F comes along with a distinguished base point {∗} the jets
of pointed smooth maps f : u −→ F make up the subset of all reduced or poin-
ted jets ∗Jetk0 F = { jetk0 f | f(0) = ∗ } ⊂ Jetk0 F , which is just the preimage
ev−1(∗) = ∗Jetk0 F of the base point.
Consider now the case that Q is a Lie group then so are both ∗Jetk0 Q and Jetk0 Q

under pointwise multiplication with Lie algebras ∗Jetk0 q and Jetk0 q respectively. With
the help of the exponential exp : q −→ Q we may identify ∗Jetk0 Q and ∗Jetk0 q,
making the vector space ∗Jetk0 q an algebraic group with group structure given by
the polynomial approximation of the Campbell–Baker–Hausdorff formula. The group
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