
Séminaires & Congrès
4, 2000, p. 53–94

PSEUDO-RIEMANNIAN METRICS
WITH PARALLEL SPINOR FIELDS
AND VANISHING RICCI TENSOR

by

Robert L. Bryant

Abstract. — I will discuss geometry and normal forms for pseudo-Riemannian metrics
with parallel spinor fields in some interesting dimensions. I also discuss the interaction
of these conditions for parallel spinor fields with the Einstein equations.

Résumé (Métriques pseudo-riemanniennes admettant des spineurs parallèles et un tenseur
de Ricci nul)

Je discuterai la géométrie et les formes normales pour les métriques pseudo-
riemanniennes qui ont des champs de spineurs parallèles en quelques dimensions
intéressantes. Je discuterai aussi l’interaction de ces conditions pour les champs de
spineurs parallèles avec les équations d’Einstein.

1. Introduction

1.1. Riemannian holonomy and parallel spinors. — The possible restricted
holonomy groups of irreducible Riemannian manifolds have been known for some
time now [2, 6, 7]. The list of holonomy-irreducible types in dimension n that have
nonzero parallel spinor fields is quite short: The holonomy H of such a metric must
be one of

– H = SU(m) (i.e., special Kähler metrics in dimension n = 2m);
– H = Sp(m) (i.e., hyper-Kähler metrics in dimensions n = 4m);
– H = G2 (when n = 7); or
– H = Spin(7) (when n = 8).

In Cartan’s sense, the local generality [6, 7] of metrics with holonomy

– H = SU(m) (n = 2m) is 2 functions of 2m−1 variables,
– H = Sp(m) (n = 4m) is 2m functions of 2m+1 variables,
– H = G2 (n = 7) is 6 functions of 6 variables, and
– H = Spin(7) (n = 8) is 12 functions of 7 variables.
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In each case, a metric with holonomy H has vanishing Ricci tensor.

1.2. Relations with physics. — The existence of parallel spinor fields seems to
account for much of the interest in metrics with special holonomy in mathematical
physics, since such spinor fields play a central role in supersymmetry. In the case of
string theory, SU(3), and lately, with the advent of M-theory, G2 (and possibly even
Spin(7)) seem to be of interest. I don’t know much about these physical theories, so
I will not attempt to discuss them.

1.3. Pseudo-Riemannian generalizations. — In the past few years, I have been
asked by a number of physicists about the generality of pseudo-Riemannian metrics
satisfying conditions having to do with parallel spinors and with solutions of the
Einstein equations. (In contrast to the Riemannian case, an indecomposable pseudo-
Riemannian metric can possess a parallel spinor field without being Einstein.)

For example, there seems to be some current interest in Lorentzian manifolds of
type (10, 1) having parallel spinor fields and perhaps also having vanishing Ricci
curvature, about which I will have more to say later in the article.

Recall [17, 5] that in the pseudo-Riemannian case, there is a distinction to be made
between a metric being holonomy-irreducible (no parallel subbundles of the tangent
bundle), being holonomy-indecomposable (no parallel splitting of the tangent bundle),
and being indecomposable (no local product decomposition of the metric). (In the
Riemannian case, of course, these conditions are locally equivalent.) The classification
of the holonomy-irreducible case proceeds much as in the positive definite case [8],
but an indecomposable pseudo-Riemannian metric need not be holonomy irreducible.
It is this difference that makes classifying the possible pseudo-Riemannian metrics
having parallel spinor fields something of a challenge. For a general discussion of the
differences, particularly the failure of the de Rham splitting theorem, see [3, 4]. Also,
the results and examples in [13, 14] are particularly illuminating.

Now, quite a lot is known about the pseudo-Riemannian case when the holonomy
acts irreducibly. For a general survey in this case, particularly regarding the existence
of parallel spinor fields, see [1]. Note that, in all of these cases, the Ricci tensor
vanishes. This is not so when the holonomy acts reducibly. Already in dimension 3,
Lorentzian metrics can have parallel spinor fields without being Ricci-flat.

An intriguing relationship between the condition for having a parallel spinor and
the Ricci equations came to my attention after a discussion during a 1997 summer
conference in Edinburgh with Ines Kath. It had been known for a while [6] that
the metrics in dimension 7 with holonomy G2 depend locally on six functions of six
variables (modulo diffeomorphism). Now, the condition of having holonomy in G2 is
equivalent to the condition of having a parallel spinor field. I had also shown that the
(4, 3)-metrics with holonomy G∗

2 depend locally on six functions of six variables, and
the condition of having this holonomy in this group is the same as the condition that
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the (4, 3)-metric admit a non-null parallel spinor field. Ines Kath had noticed that
the structure equations of a (4, 3) metric with a null parallel spinor field did not seem
to imply that the Ricci curvature vanished, and she wondered whether or not there
existed examples in which it did not. After some analysis, I was able to show that
there are indeed (4, 3)-metrics with parallel spinor fields whose Ricci curvature is not
zero and whose holonomy is equal to the full stabilizer of a null spinor. These metrics
depend on three arbitrary functions of seven variables. However, a more intriguing
result is that, when one combines the condition of having a parallel null spinor with
the condition of being Ricci-flat, the (4, 3)-metrics with this property depend on six
functions of six variables, just as in the non-null case (where the vanishing of the Ricci
tensor is automatic).

In any case, this and the questions from physicists motivates the general problem of
determining the local generality of pseudo-Riemannian metrics with parallel spinors,
with and without imposing the Ricci-flat condition. This article will attempt to
describe some of what is known and give some new results, particularly in dimensions
greater than 6.

Most of the normal forms that I describe for metrics with parallel spinor fields of
various different algebraic types are already known in the literature, or have been
derived independently by others. (In particular, Kath [15] has independently derived
the normal forms for the split cases with a pure parallel spinor.) What I find the most
interesting is that, in every known case, the system of PDE given by the Ricci-flat
condition is either in involution (in Cartan’s sense) with the system of PDE that
describe the (p, q)-metrics with a parallel spinor of given algebraic type or else follows
as a consequence (and so, in a manner of speaking, is trivially in involution with the
parallel spinor field condition). I have no general proof that this is so in all cases, nor
even a precise statement as to how general the solutions should be, since this seems to
depend somewhat on the algebraic type of the parallel spinor. What does seem to be
true in a large number of (though not all) cases, though, is that the local generality of
the Ricci-flat (p, q)-metrics with a parallel spinor of a given algebraic type seems to be
largely independent of the given algebraic type, echoing the situation for (4, 3)-metrics
mentioned above that first exhibited this phenomenon.

Since this article is mainly a discussion of cases, together with an explicit working
out of the standard moving frame methods and applications of Cartan-Kähler theory,
I cannot claim a great deal of originality for the results. Consequently, I do not state
the results in the form of theorems, lemmas, and propositions, but instead discuss
each case in turn. The most significant results are probably the descriptions of the
generality of the Ricci-flat metrics with parallel spinors in the various cases. Another
possibly significant result is the description of the (10, 1)-metrics with a parallel null
spinor field, since this seems to be of interest in physics [11].
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2. Algebraic background on spinors

All of the material in this section is classical. I include it to fix notation and
for the sake of easy reference for the next section. For more detail, the reader can
consult [12, 16].

2.1. Notation. — The symbols R, C, H, and O denote, as usual, the rings of
real numbers, complex numbers, quaternions, and octonions, respectively. When F is
one of these rings, the notation F(n) means the ring of n-by-n matrices with entries
in F. The notation Fn will always denote the space of column vectors of height n
with entries in F. Vector spaces over H will always be regarded as having the scalar
multiplication acting on the right. For an m-by-n matrix a with entries in C or H,
the notation a∗ will denote its conjugate transpose. When a has entries in R, a∗ will
simply denote the transpose of a.

The notation Rp,q denotes Rp+q endowed with an inner product of type (p, q). The
notation C

p,q denotes C
p+q endowed with an Hermitian inner product of type (p, q),

with a similar interpretation of Hp,q, but the reader should keep in mind that a
quaternion Hermitian inner product satisfies 〈v, wq〉 = 〈v, w〉q and 〈vq, w〉 = q̄〈v, w〉
for q ∈ H.

2.2. Clifford algebras. — The Clifford algebra C
(p, q) is the associative algebra
generated by the elements of Rp,q subject to the relations vw+wv = −2v·w 1. This is
a Z2-graded algebra, with the even subalgebra C
e(p, q) generated by the products vw
for v, w ∈ Rp,q.

Because of the following formulae, valid for p, q ≥ 0 (see [12, 16]),

C
e(p+1, q) � C
(p, q)

C
(p+1, q+1) � C
(p, q)⊗ C
(1, 1)

C
(p+8, q) � C
(p, q)⊗ C
(8, 0)

C
(p, q+1) � C
(q, p+1)

(1)

all these algebras can be worked out from the table

(2)

C
(0, 1) � R ⊕ R C
(1, 1) � R(2)

C
(1, 0) � C C
(2, 0) � H

C
(3, 0) � H ⊕ H C
(4, 0) � H(2)

C
(5, 0) � C(4) C
(6, 0) � R(8)

C
(7, 0) � R(8)⊕ R(8) C
(8, 0) � R(16).

For example, C
e(p+1, p+1) � C
(p, p+1) � R(2p)⊕ R(2p).

2.3. Spin(p, q) and spinors. — By the defining relations, if v ·v �= 0, then v ∈ Rp,q

is a unit in C
(p, q) and, moreover, the twisted conjugation ρ(v) : C
(p, q) → C
(p, q)
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defined on generators w ∈ Rp,q by ρ(v)(w) = −vwv−1 preserves the generating sub-
space Rp,q ⊂ C
(p, q), acting as reflection in the hyperplane v⊥ ⊂ Rp,q.

The group Pin(p, q) ⊂ C
(p, q) is the subgroup of the units in C
(p, q) generated
by the elements v where v · v = ±1 and the group Spin(p, q) = Pin(p, q) ∩C
e(p, q) is
the subgroup of the even Clifford algebra generated by the products vw, where v·v =
w·w = ±1.

The map ρ defined above extends to a group homomorphism ρ : Pin(p, q) → O(p, q)
that turns out to be a non-trivial double cover. The homomorphism ρ : Spin(p, q) →
SO(p, q) is also a non-trivial double cover.

The space of spinors S
p,q is essentially an irreducible C
(p, q)-module, considered

as a representation of Spin(p, q).
When p−q ≡ 3 mod 4, this definition is independent of which of the two possible

irreducible C
(p, q) modules one uses in the construction.
When p−q ≡ 0 mod 4, the space Sp,q is a reducible Spin(p, q)-module, in fact, it

can be written as a sum S
p,q = S

p,q
+ ⊕ S

p,q
− where S

p,q
± are irreducible. Action by an

element of Pin(p, q) not in Spin(p, q) exchanges these two summands.
When p−q ≡ 1 or 2 mod 8, the definition of Sp,q as given above turns out to be

the sum of two equivalent representations of Spin(p, q). In this case, it is customary
to redefine Sp,q to be one of these two summands, so I do this without comment in
the rest of the article.

When q = 0, i.e., in the Euclidean case, I will usually simplify the notation by
writing C
(p), Spin(p), and S

p instead of C
(p, 0), Spin(p, 0), and S
p,0, respectively.

2.4. Orbits in the low dimensions. — I will now describe the Spin(p, q)-orbit
structure of Sp,q when p+q ≤ 6. This description made simpler by the fact that there
are several ‘exceptional isomorphisms’ of Lie groups (as discovered by Cartan) that
reduce the problem to a series of classical linear algebra problems.

When p+q ≤ 1, these groups are not particularly interesting and, since there is no
holonomy in dimension 1 anyway, I will skip these cases.

2.4.1. Dimension 2. — Here there are two cases.

2.4.1.1. Spin(2) � U(1). — The action of Spin(2) = U(1) on S
2 � C is the unit

circle action

(3) λ · s = λs .

The orbits of Spin(2) on S2 = C are simply the level sets of the squared norm, so all
of the nonzero orbits have the same stabilizer, namely, the identity.

Identifying R2,0 with C, the action of Spin(2) on R2,0 can be described as

(4) λ · v = λ2 v

and the inner product is v · v = |v|2 = v̄ v.
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