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ON THE KATO INEQUALITY
IN RIEMANNIAN GEOMETRY

by

David M. J. Calderbank, Paul Gauduchon & Marc Herzlich

Abstract — We describe recent works of the authors as well as of T. Branson on
refined Kato inequalities for sections of vector bundles living in the kernel of natural
first-order elliptic operators

Résun® (Sur I'inégalité de Kato en géométrie riemannienne). —  Nous faisons le point
sur des travaux récents, dus aux auteurs et aussi & T. Branson, sur des raffinements
de I'inégalité de Kato, valables pour des sections d’un fibré vectoriel annulées par un
opérateur différentiel naturel et elliptique du premier ordre.

1. Introduction

The Kato inequality is a classical tool in Riemannian geometry. It stands as a
useful way to relate vector-valued problems on vector bundles to scalar valued ones
involving only functions. It says that for a smooth section £ of a Riemannian vector
bundle E equipped with a compatible connection V,

|dlgl] < V¢

outside the zero-set of £. This is an easy consequence of the Schwarz inequality.
More surprisingly, some authors noticed that refined Kato inequalities, of the type

ldI¢l] < k|VEl with k<1,

were true for £ in the kernel of an elliptic first-order differential operator acting on
sections of E. This remark was a crucial step in a number of problems involving
either decay estimates at infinity of the norm of sections satisfying an elliptic equa-
tion (curvature of Einstein metrics on asymptotically flat manifolds, second form of
minimal hypersurfaces in spaceforms, Yang-Mills fields on the flat four-space, etc...)
or fine-tuned spectral problems.
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The constants k that were found depended strongly on the elliptic operators in-
volved and it was observed that there should exist a systematic way to detect and
compute them and that there should be a strong link between their values and
representation-theoretic data of the given bundle.

At the time of the meeting in Marseille, we had devised a method leading to
computations of optimal refined Kato inequalities in a few cases including all possible
situations in dimensions 3 and 4 and a talk on that subject was delivered by the third
author. The method was extended shortly after to a systematic one that computes
almost all the possible constants and a large number of explicit values were then given
[6]. During the same period, T. Branson independently found a different method to
compute all of them [5], based on his earlier works on the spectrum of elliptic second-
order differential operators on the round sphere [4]. We intend here to report on these
two methods, and try to highlight their differences and their relationships. We shall
also give a few examples of old and new uses of refined Kato inequalities.

We have tried to make this survey accessible for a reader not acquainted with
slightly specialized tools of representation theory (all of which may however be found
in the textbook [8]). This led us to be somehow imprecise or unspecific at some
places in the main body of this text. We thought however that this could be useful
for those that were interested rather in the results or the applications of refined Kato
inequalities in global analysis on manifolds rather than in the precise course of the
proofs. Appendices have been added at the end, containing more elaborate details
and precise computations. We then hope that this text may serve as a reading guide
before entering the two more technical papers [5] and [6].

Acknowledgements. — We thank Jacques Lafontaine for his useful remarks on a draft
version of this paper.

2. Basics: the classical Kato inequality

We consider from now on an oriented Riemannian manifold M endowed with a
vector bundle E induced from a representation of the special orthogonal group SO(n)
or the spin group Spin(n) (in which case M will be supposed to be spin). If V is any
metric connection on F and £ is any section of F, then

2 |dill €l = [d(Ig?)] = 2 (V€8] < 2|Vell¢]

(with the metric on T*M ® E given by the tensor product metric). Hence we get the
classical Kato inequality

(1) ldlel] < [vel
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outside the zero set of £&. Moreover the equality case is achieved at a point if and only
if there is a 1-form « such that

V¢ = a®é.

Following J. P. Bourguignon [3], we now consider a section ¢ lying in the kernel of
a natural first-order operator P on E. Any such operator is the composition of the
covariant derivative followed by projection IT on one (or more) irreducible components
of the bundle T*M ® E, and its symbol reads: o(P) = o(Il o V) = II. Now assume
(1) is optimal at some point. The discussion above shows that V& = a ® £ at that
point. But

0 = P¢ = MoVE=T(a®é).

Thus, optimality is possible if and only if P is not an elliptic operator. Conversely,
one might guess that any elliptic operator P gives rise, for any section ¢ in its kernel,
to a refined Kato inequality

(2) |d¢| < kp|VE]

with a constant kp depending only on the operator P involved.

3. Background: conformal weights

We consider an irreducible natural vector bundle E over a Riemannian manifold
(M, g) of dimension n, with scalar product (-,-) and a metric (not necessarily Levi-
Civita) connection V. By assumption, E is associated to an irreducible representation
A of the group SO(n) (resp. Spin(n) if necessary). The tensor product of A with
the standard representation 7 splits in irreducible components as 7 ® A = 695.\7:1 -
Equivalently, and to set notations, we write

T*M ® E = ®}_, F;.

Projection on the j-th summand will be denoted by II;. Apart from the exceptional
case where T*M ® E contains two irreducible components for SO(n) whose sum is an
irreducible representation for O(n), each F; is an eigenspace for the endomorphism
B of T*M ® E defined as

n
B(a®v):Zei®(ei/\a)'v
i=1
where the dot means the action of so(n) on the representation space E. The en-
domorphism B plays an important role in conformal geometry [9]. Its eigenvalues

are called the conformal weights, denoted w;, and can be easily computed from
representation-theoretic data : the Casimir numbers [8] of representations A, 7 and
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1; (normalized as to ensure C(so(n),7) = n — 1, see Appendix A for more on this
point). More precisely:

w; = % (C(s0(n), ;) — Cs0(n), \) — C(s0(n), 7)) .

We shall adopt here the convention not to split irreducible representations of O(n)
inside T® \ into irreducibles for SO(n). This ensures the conformal weights are always
distinct, henceforth F; will always denote the eigenspace associated to w;, and it
corresponds to an irreducible summand of 7 ® A except in the exceptional case quoted
above where it is a sum of two irreducibles. Moreover, irreducible components will
be ordered from 1 to N (the number of distinct eigenspaces) in (strictly) decreasing
order of conformal weights (see Appendix A for more details on the representation
theory involved).

Since they are easily computable, all the results that follow will be given in terms
of the conformal weights, or more precisely in terms of the modified conformal weights
w; = w; + (n — 1)/2, eigenvalues of the translated operator B=B+(n—1)/2id.

Natural first order differential are indexed by subsets I of {1,..., N}. They all are
of the following form:

P[ = Z a; Hl oV s
iel
any such operator is said to be (injectively, or overdetermined) elliptic if its symbol
II; = Ziel a;11; does not vanish on any decomposable element a®v of T*M ® E. The
coefficients a; can all be set to 1 without harm as lying in the kernel of the operator
is equivalent to lying in the intersection of the kernels of all the elementary operators
P; =1I; 0V for ¢ in I and being elliptic is equivalent to the fact that no decomposed
tensor product lives in the intersection of the kernels of the II;.

Elliptic operators in this precise sense have been completely classified by T. Branson
in [4]. Since any set J containing a subset I such that P; is elliptic gives rise to an
operator P; which is also elliptic, it suffices to describe the set of minimal elliptic
operators, i.e. the set of operators P; such that P; is not elliptic for any proper subset
Jof I. T. Branson’s result provides an explicit description of this set (see Appendix B
for more details). For example, the highest weight operator Py} is always minimal
elliptic. Moreover and quite surprisingly, sets of indices corresponding to minimal
elliptic operators are always small: in fact they contain at most one or two elements.

Our guiding philosophy will now be to prove refined Kato inequalities for sections
lying in the kernels of natural first-order elliptic operators on E, with the constants
given in terms of the (modified) conformal weights. It is an intersting feature of the
problem to note that two genuinely different methods lead to the results. Both end
up with semi-explicit expressions of the constants, which can be obtained by solving
a minimization problem over a finite set of real numbers. The results can then be
made completely explicit in a large number of cases.
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The first method, devised by the authors, can be considered as the local method.
It relies on elaborate algebraic considerations on the conformal weights together with
a “linear programming” problem. It is sharp and also provides an explicit description
of the sections satisfying equality in the refined Kato inequality at each point. It has
the unfortunate feature of being non-sharp for some small (precisely known) set of
operators, hopefully seldom encountered in practice.

The second one, or the global method, is due to T. Branson. It gives a refined Kato
inequality in every case, sharpness is also clear but the equality cases’ description is
less precise. The proofs rely on the spectral computations on the round sphere done in
[4] using powerful techniques of harmonic analysis, together with a clever elementary
lemma that relates the knowledge of the spectrum of an operator to information on
its symbol.

4. Kato constants: linear programming method of computation

The local method finds its roots in the proof of the classical Kato inequality: it
aims at obtaining a refined Schwarz inequality for

[(VE, €)]
when £ is a section lying in the kernel of an elliptic first-order operator Pj.
4.1. Ansatz. — Consider ® an element of kerII; at some point (as is V& at each

point) and v an element of E at the same point (as is £). We let I a subset of
{1,..., N}, denote by I its complement in {1,..., N} and compute

sup |<<I>,v>| < sup |<<I>,a®v>| = sup |<<I>,Hf(a®v)>|
[v|=1 lal=|v|=1 la|=]v|=1
(3)
< sup |Ha®wv)| ] [P
lal=lo|=1

This gives a refined Kato inequality with k; = sup)q—j,|=1 |IIz(e ® v)|. Moreover,
equality holds in it if and only if it holds in the refined Schwarz inequality with v = &
and ® = V¢. Hence it is algebraically sharp since the supremum is always attained
by compactness. If equality holds, then V{ = II+(a ® ) for some o ® & such that
[+ ® §)| is maximal among all |II7(a ® v)| with |a| = |v| = 1. Moreover such
a situation can easily be achieved in the flat case with a suitable affine solution of
P =0.

4.2. Resolution of the problem. — We now follow the standard method of Lag-
range interpolation. Each projection II; can be written as

Bodid S ® (S D o (w) B

H4 = — — = — — s
J Ig W; — Wy [Tz (w; — wi)
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