
PREFACE

The whole idea behind the Conference “Global Analysis and Harmonic Analysis”,
held at the Centre International de Rencontres Mathématiques in Marseilles-Luminy
in May 1999, was to create the proper conditions for members of two mathemat-
ical sub-communities, harmonic analysts and global differential geometers using or
studying spinor fields, to meet and discuss problems of common interest. The intense
discussions that took place all along the week, and continued later, proved that the
time was ripe for such a friendly confrontation.

In doing so, we were in some sense only coming back to the origins of the two
disciplines whose birth and development owe a lot to two towering mathematical
figures, namely William Kingdon Clifford and Élie Cartan.

Harmonic Analysis can be traced back to the Erlangen Programme and the new
definition of a geometry proposed by Felix Klein in his 1872 inaugural address as
a collection of properties invariant under the action of a transitive group, its auto-
morphism group. It is less known that, some years before, Hermann von Helmholtz
in his 1869 “Über Tatsachen, welche der Geometrie zur Grunde liegen” did propose a
similar, even more comprehensive programme. W.K. Clifford also had a broad view of
the way Geometry can be formulated. All these works induced the systematic study
of homogeneous spaces, i.e. spaces which are acted upon transitively by a group. This
grew into a branch of its own through the first systematic study of continuous groups
made by Sophus Lie in the last years of the xixth century.

At that time, the tool of choice in studying the physical world was the theory of
partial differential equations. Lie noticed that almost all properties of differential
equations that were useful in their integration, or solution, had to do with their
behavior under groups of transformations of the underlying space. He was led to the
idea that one might be able to do for differential equations what Galois had done
for algebraic equations, namely to reduce their solution to group theory. The fact
that the theory of Lie groups was developed just in time for modern Physics is no
coincidence. S. Lie and his successors on one hand, and the physicists on the other
were both struggling with the deeper meaning of partial differential equations.
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W.K. Clifford laid the ground for the theory of algebras that bear his name, a
motherly niche for spinors. He was interested in defining all kinds of generalisations
of quaternions, and hypercomplex numbers. The notion of spinors arose formally for
the first time in the work of Élie Cartan when, in 1913, he gave the first complete
classification of complex representations of the Lie algebras of orthogonal groups. In
doing so he was taking up earlier work by Wilhelm Karl Joseph Killing. Besides
the already known irreducible tensor representations of matrix algebras, in each di-
mension he found another fundamental irreducible representation whose dimension
was growing exponentially with the dimension of the group (as well as new infinite
families of irreducible representations obtained by decomposing its tensor powers). It
is only later, in 1914, when he turned to the study of the real representations, that
he considered the problem from the group point of view, to discover that the spinor
representations were not genuine representations of the orthogonal groups, but rep-
resentations of 2-fold covers of these groups. These representations were later named
“spin representations” in connection with their use by Paul Adrien Maurice Dirac in
his relativistic model of the spinning electron. For that purpose he introduced a new
operator, since then called the Dirac operator, a version of the Schrödinger equation
invariant under the Lorentz group. The Dirac operator could not be a scalar operator
but rather was necessarily acting on vectors in this representation space; these were
called “spinors”. It is therefore natural that the 2-fold covers of orthogonal groups be
called “spin groups”.

Élie Cartan also contributed greatly to Harmonic Analysis through the systematic
development of the theory of symmetric spaces. They provide one of the most beau-
tiful instances of interaction between pure Geometry (the parallelism of the curvature
tensor), Lie group theory (the finite dimensionality of the group generated by geodesic
symmetries centered at each point), and Algebra (specific pairs of Lie algebras, the
famous “symmetric pairs”). The analysis of invariant differential operators on sym-
metric spaces can be unfolded systematically, and for that theory too the parallel
between Geometry and Analysis is one of the most fruitful Leitfaden. In this context,
a beautiful duality appears between the compact and the non-compact cases. It too
has a geometric side (curvatures have opposite signs) and an analytic one.

The theories of both spinors and homogeneous spaces developed, each in its own
way, much further, throughout the entire xxth century. Today, spinor fields lie at
the heart of almost all modern theories of physics as wave functions of fermionic
particles, the basic constituents of matter. This went very far with the claim of Roger
Penrose that all Physics should be rethought in terms of spinors. This philosophy
was finally subsumed in the various attempts to define a “super-geometry”, in which
non commuting variables are treated on an equal footing with (more conventional)
commuting variables. The search for supersymmetry (if one is to keep the spirit of
the Erlangen Programme) has been one of the driving forces of the development of
theoretical physics for the last twenty years.

Harmonic Analysis has developed with considerable success much beyond the case
of symmetric spaces. It now is one of the major branches of Analysis, that impacts
many other areas of Mathematics. The theory of pseudo-differential operators, a de-
cisive step in the study of elliptic operators, was greatly influenced in its development
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by the consideration of algebras of operators connected to solvable and other Lie
groups, as exemplified in the work of Elias Stein. It was also significantly influenced
by the systematic search for irreducible representations of very specific groups by the-
oretical physicists. They needed to test them as possible symmetry groups of physical
theories, whereas vectors in the irreducible representation spaces would model wave
functions of elementary particles of the theory in this context.

The coming together of Geometry and Analysis we are talking about here is indeed
one of the main events of xxth century mathematics. Depending on the area one is
coming from, one sees it as the recognition by geometers of the exceptional power of
analytical tools to solve geometric problems or as the remarkable ability of questions
rooted in geometry to point to the critical situations in analytical contexts. As a
result, everybody today acknowledges the importance of Global Analysis, a new do-
main covering global properties to be considered in order to solve analytical problems,
as well as analytical aspects of global geometric questions. This cross-fertilisation is
examplified by the role played by spectral invariants (e.g., eigenvalues of the Laplace-
Beltrami operator on Riemannian manifolds either through geometric estimates of the
lowest ones, or through their asymptotic behaviour). Other examples are provided by
the very fruitful study of geometric non-linear variational problems that came out of
the limiting case of Sobolev inequalities, in particular those connected to conformal
classes of metrics on spaces admitting non compact groups of automorphisms such
as spheres, a critical situation. Many more problems related to conformal geometry
remain unsolved, and this theory is still wide open. One of the reasons for this state
of affairs is that the analysis required to deal properly with it is not the traditional
theory of second order elliptic operators but the more formidable theory of fourth
(and higher) order operators.

There is still another source that had a great impact on many aspects of Geometry
and Analysis, namely the theory of integrable systems. It has been used extensively
by physicists, in particular in the extremely productive and stimulating atmosphere
that, for many years, characterized the Soviet school of mathematical physics. It took
some time before this theory was considered seriously enough in Western circles. This
slowness to recognize the richness and the fruitfulness of points of view that it brings
is likely to be related to its missing (so far will optimists say) to fitting in a general
theory, a sin for people still under the influence of the Bourbaki era. A direct link
to problems we are interested in is provided by the theory of twistors, also stongly
advocated by Roger Penrose, which gives special (but very interesting) solutions to a
number of outstanding geometric problems, provided one “twists” it properly. This
again leads to a very happy and prolific marriage between Harmonic Analysis and
Differential Geometry, even Spin Geometry. Again, to name one specific instance,
finding local coordinates on the twistor space of a four-dimensional self-dual manifold
is nothing but looking for local solutions to the Killing spinor equations, provided
one takes into account the close connection that, in four dimensions, ties together
complex structures and lines of spinors.

One tool that is in some sense exemplary of the still mysterious interaction between
local and global geometric properties through analytical means goes by the name of
“Weitzenböck formulas”. These formulas, already noticed by Weitzenböck in the
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early part of the century, compare two natural second-order differential operators on
a Riemannian manifold. They have been exploited in Differential Geometry since the
far reaching work of Salomon Bochner in the 30s, showing that metrics with positive
Ricci curvature, a local assumption, could only exist on manifolds with vanishing first
Betti number, a global consequence. Since then, in a number of geometric instances,
it was possible to find natural second-order differential operators and compare them
in order to derive global results from local assumptions on the curvature. One of
the most striking successes of this method is in the spinorial context, and goes back
to a 1963 Compte-Rendus Note to the Académie des Sciences de Paris by André
Lichnerowicz. The formula he used was in fact known to Erwin Schrödinger. Thanks
to it and to the Atiyah-Singer theorem, which by the way is the prototype of results
connecting Geometry and Analysis, A. Lichnerowicz could prove that any compact
spin manifold with non-vanishing Â-genus does not admit any metric with positive
scalar curvature, a far reaching generalisation of the Bochner theorem we quoted
above.

A systematic treatment of these questions in fact requires the use of representation
theory, and this brings us back to Harmonic Analysis. Indeed, the occurence of
curvature terms of a certain type can be explained on a priori representation theoretic
grounds. Considering all possible invariant, or natural operators, is indeed the key to
obtaining the optimal formulas, and this approach is very similar to what has been the
trend in Harmonic Analysis, i.e. the systematic consideration of algebras of invariant
differential operators.

Intertwining operators, and notably intertwining differential operators, have for
some time been a central feature of representations obtained by parabolic induc-
tion. The parabolic groups in question are natural choices for the structure group
of a geometry. For example, oriented Riemannian geometry is the study of the spe-
cial orthogonal structure group (or the spin group if we want access to the spinor
bundles). Conformal geometry naturally points to the maximal parabolic subgroup
of the conformal group of the sphere as its structure group. Within this group are the
special orthogonal group, a group of uniform dilations, and a nilpotent part. Similar
statements can be made for CR and other geometries. The nilpotent content of the
structure group leads to a nontrivial Jordan content in its associated vector bundles.
That is, even before taking section spaces, one has a nontrivial composition series,
under the structure group, of the vector bundle fibers. The exploitation of this struc-
ture, and calculations with its characteristic bundles on arbitrary manifolds admitting
the structure, is still a new subject in Differential Geometry, despite the wealth of
knowledge one has in the model (homogeneous space) cases from the theory of the
principal series and Knapp-Stein intertwinors on one hand, and from the theory of
Verma modules on the other.

Work on such structures was initiated in the 1920’s by Tracy Thomas, and largely
abandoned after his work. (The language of vector bundles was still not available, so it
is no wonder that people had trouble figuring out what Thomas was talking about.)
After a long hiatus, the subject was taken up again in the 1980’s by a number of
researchers. Part of the work of the conference was to pick up the different strands of
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this project (representation theoretic and differential geometric), and get the different
groups of practitioners talking together.

The most recent strictly mathematical achievements involving spinors are connec-
ted to the topology and geometry of manifolds. It bears the name of Seiberg-Witten
theory. At its heart lies a system of coupled non-linear equations associating a connec-
tion (and its curvature form) and a spinor field. It was purely motivated by Physics
where there are supposed to account for a certain duality. Moduli spaces of solutions
bring a lot of information on the geometry of the space on which they are defined.

All this shows that, presently, Mathematics is thriving, and modifies itself through
a very dynamic mixing of subdisciplines. As a result, mathematicians are more and
more tempted to go even further along the path of specialisation. This can have short-
term advantages, sometimes even amplified by the evaluation policies enforced by
some research organisations and some organs of our community. We must nevertheless
be careful, and make sure that we create conditions to help in particular our younger
colleagues form a more global picture of our discipline. This can be done in many
different ways. This volume acknowledges one of them, namely the attempt of bringing
together two subdisciplines which have developed very rapidly in the last twenty years.
In setting up this event, and in disseminating its fruits through these Procedings, we
hope to have modestly contributed to the long term health of our discipline. Many
more attempts will be needed, but others will create more opportunities.
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