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MODERATE DEVIATIONS FOR THE RANGE
OF A TRANSIENT RANDOM WALK:

PATH CONCENTRATION

 A ASSELAH  B SCHAPIRA

A. – We study downward deviations of the boundary of the range of a transient walk
on the Euclidean lattice. We describe the optimal strategy adopted by the walk in order to shrink the
boundary of its range. The technics we develop apply equally well to the range, and provide pathwise
statements for the Swiss cheese picture of Bolthausen, van den Berg and den Hollander [7].

R. – Nous étudions les déviations qui réduisent la frontière du support d’une marche
transiente sur le réseau euclidien. Nous décrivons en particulier une stratégie optimale pour réduire
la frontière du support. Les techniques employées s’appliquent aussi bien au volume du support
lui-même, et fournissent des énoncés mathématiques qui illustrent l’image du « fromage suisse » de
Bolthausen, van den Berg et den Hollander.

1. Introduction

In this paper we study downward deviations of the boundary of the range of a simple
random walk .Sn; n 2 N/ on Zd , with d � 3. The range at time n, denoted Rn, is the set
of visited sites fS0; : : : ; Sng, and its boundary, denoted @Rn, is the set of sites of Rn with
at least one neighbor outside Rn. Our previous study [3] focused on the typical behavior
of the boundary of the range, whereas this work is devoted to downward deviations and
applications to a hydrophobic polymer model. The zest of the paper is about describing the
optimal strategy adopted in order to shrink the boundary of the range, and our approach
shed some light on the shape of the walk realizing such a deviation. In [3], we emphasized
the ways in which, for a transient walk, the range and its boundary share a similar nature.
Thus, even though the boundary of the range is our primary interest, we mention at the outset
that the technics we develop apply equally well to the range. Since this last issue has been the
focus of many celebrated works, let us describe first the state of the art there.
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756 A. ASSELAH AND B. SCHAPIRA

1.0.0.1. Deviations of the range. A pioneering large deviation study of Donsker and
Varadhan [11] establishes asymptotics for downward deviations of the volume of the Wiener
sausage t 7! W a.t/, that is the Lebesgue measure of an a-neighborhood of the standard
Brownian motion. The main result of [11] establishes, in any dimension and for any ˇ > 0,
the following asymptotics

(1.1) lim
t!1

t�
d
dC2 logEŒexp

�
� ˇW a.t/

�
� D

d C 2

2
ˇ.
2�D

dˇ
/
d
dC2 ;

where �D is the first eigenvalue of the Laplacian with Dirichlet condition on the boundary
of a sphere of volume one. The asymptotics (1.1), obtained in the random walk setting
in [12], correspond to downward deviation of the volume of the range fjRnj � f .n/g where

jRnj denotes the volume of Rn and f .n/ is of order n
d
dC2 . They suggest that during time

n a random walk is localized in a ball of radius .n=ˇ/
1

dC2 filled without holes. Bolthausen [9]
and Sznitman [23], with different technics, extended the result of [11] to cover downward
deviations corresponding to f .n/ D n1�ı for any ı > 0. A consequence of their analysis
is that for 0 < 
 � 2
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t!1
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Then, three deep studies dealt with the trajectory conditioned on realizing a large deviation
by Sznitman [24], Bolthausen [10] and Povel [21]. The case 
 D 0 in (1.2) was recognized
as critical by Bolthausen [9], and indeed a different behavior was later proved to hold [7].
The series of papers on downward deviations culminated in a paper of Bolthausen, van den
Berg and den Hollander [7] which covers the critical regime fjRnj � EŒjRnj� � �"ng.
The latter contribution offers a precise Large Deviation Principle, but no pathwise statement
characterizing the most likely scenario. The present paper is a step towards filling this gap
and providing answers to their motto How a Wiener sausage turns into a Swiss cheese? Let us
quote their mathematical results. In dimension d � 3, EŒW a.t/� grows linearly and the limit
of 1

t
EŒW a.t/� is denoted �a (the Newtonian capacity of a ball of radius a). It is proved in [7]

that for any 0 < " < 1

(1.3) lim
t!1

1

t
d�2
d

logP
�
W a.t/ � EŒW a.t/� � �"�at

�
D �Ia."/;

where
(1.4)

Ia."/ D
1

2�
2=d
a

inffkrf k2 W f 2 H 1.Rd /; kf k2 D 1;
Z
Rd

�
1 � exp.�f 2.x///dx � 1 � "g:

A similar result for simple random walks is obtained in Phetpradap’s thesis [20]: �a becomes
the non-return probability say �d , and the factor 1=2�2=da in (1.4) becomes 1=2d�2=d

d
. When

d D 3 or d D 4, the minimizers of (1.4) are strictly positive on Rd , and decrease in the radial
component. This is interpreted as saying that Wiener sausage “looks like a Swiss cheese” with
random holes whose sizes are of order 1 and whose density varies on scale t1=d . On the other
hand, when d � 5, and when the parameter " in (1.3) is small, there is no minimizer for the
variational problem (1.4), suggesting that the optimal strategy is time-inhomogeneous.
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1.0.0.2. Boundary of the range. The boundary of the range, in spite of not receiving much
attention, enters naturally into the modeling of hydrophobic polymers. Indeed, a polymer is a
succession of monomers centered at the positions of the walk (and thus covering Rn), the
complement of the range is occupied by the aqueous solvent, and being hydrophobic means
that the monomers try to hide from it. A natural model is then the following polymer measure
depending on two parameters: its length n, and its inverse temperature ˇ,

deQˇn D 1eZn.ˇ/ exp.�ˇj@Rnj/ dPn;

where Pn denotes the law of the simple random walk up to time n and eZn.ˇ/, the partition
function, is a normalizing factor. Biology suggests that as one tunes ˇ, for a fixed polymer
length, a phase transition appears. The recent results of Berestycki and Yadin [6] treat an
asymptotic regime of length going to infinity, and suggest that for any positive ˇ a long
enough polymer, that is under eQˇn , is localized in a ball of radius �n with �dC1n of order n.
Thus, to capture the insight from Biology, we rather scale ˇ with n2=d , when n is taken to
infinity. We therefore consider

(1.5) dQˇn D
1

Zn.ˇ/
exp

�
�

ˇ

n2=d

�
j@Rnj � EŒj@Rnj�

��
dPn:

The centering of j@Rnj is a matter of taste, but the scaling of ˇ by n2=d is crucial, and
corresponds to a critical regime for the boundary of the range reminiscent of (1.2) for 
 D 0.
Indeed, understanding the polymer measure is linked with analyzing the scenarii responsible
for shrinking the boundary of the range on the scale of its mean. However, before tackling
deviations, let us recall some typical behavior of the boundary of the range. Okada [19] has
proved a law of large numbers in dimension d � 3, and when dimension is two, he proved
that

�2

2
� lim
n!1

EŒj@Rnj�

n=.logn/2
� 2�2:

Note that Benjamini, Kozma, Yadin and Yehudayoff [5] in their study of the entropy of the
range have obtained the correct order of magnitude for EŒj@Rnj� in d D 2, and have linked
the entropy of the range to the size of its boundary.

In addition, a central limit theorem for the boundary of the range was proved in [3] in
dimension d � 4. When dimension is three, the variance is expected to grow like n logn,
and only an upper bound of the right order is known [3]. We henceforth focus on the ways
in which a random walk reduces the boundary of its range.

1.0.0.3. Capacity of the range. A key object used to probe the shape of the random walk is
the capacity of its range. We first define it, and then state our result. For ƒ � Zd , let HCƒ be
the time needed by the walk to return to ƒ. The capacity of ƒ, denoted cap.ƒ/, is

(1.6) cap.ƒ/ D
X
x2ƒ

Px
�
HCƒ D1

�
:

Let us recall one of its basic property. There exists a positive constant ccap, such that for all
finite subset ƒ � Zd

(1.7) ccap jƒj
1� 2

d � cap.ƒ/ � jƒj:
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