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Abstract. – Employing a proof technique suggested by Zannier and first successfully
implemented by Pila and Zannier to give a reproof of the Manin-Mumford conjecture
on algebraic relations on torsion points of an abelian variety, Pila presented an un-
conditional proof of the André-Oort conjecture when the ambient Shimura variety is
a product of modular curves. In subsequent works, these results have been extended
to some higher dimensional Shimura and mixed Shimura varieties. With these notes
we expose these methods paying special attention to the details of the Pila-Wilkie
counting theorem.

Résumé (O-minimalité comme approche à la conjecture d’André-Oort). – En utilisant une
technique de preuve, suggérée par Zannier et utilisée avec succès par Pila et Zannier,
pour prouver la conjecture de Manin-Mumford sur les relations algébriques sur les
points de torsion d’une variété abélienne, Pila a présenté une preuve inconditionnelle
de la conjecture de André-Oort, lorsque la variété de Shimura ambiante est un produit
de courbes modulaires. Ces résultats ont ensuite été étendus à d’autres variétés de
Shimura et variétés de Shimura mixtes. Nous exposons ici ces méthodes, en accordant
une attention particulière aux détails du théorème de comptage de Pila et Wilkie.

1. Introduction

In the paper [57] Pila gave the first unconditional proof of the André-Oort conjec-
ture for mixed Shimura varieties expressible as products of curves. This fact on its
own is a remarkable development, but the method of proof, coming as it does from the
theory of o-minimality, constitutes a major breakthrough. Zannier had proposed that
a theorem of Pila and Wilkie on counting rational points in definable sets in combina-
tion with suitable estimates on sizes of Galois orbits could be used to prove theorems
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in the vein of the André-Oort conjecture, and, indeed, in joint work with Pila [63]
he implemented this strategy to reprove the Manin-Mumford conjecture. Subsequent
work by many authors [31, 46, 45, 44, 50, 59, 16] has borne out the promise of this
strategy and the pace of the continuing developments suggests that the project has
not been played out.

These notes are based on a pair of lecture series I delivered in May 2011, one in
Luminy to an assembled group of experts on the André-Oort conjecture with the
aim of expositing the applications of the Pila-Wilkie counting theorem to diophantine
geometric problems and then a second lecture series in Lyon to model theory students
participating in a special Maloa (Mathematical Logic and its Applications) semester
with the goal of explaining in detail the counting theorem itself. I have prepared two
other accounts of these theorems [71, 72] to which the reader is referred for gentler
introductions. In this paper, I will follow the proofs of the original papers fairly
closely resisting the temptation to “simplify” those arguments. I do not claim any of
the results explicated in this paper as my own, though, of course, any errors I may
have inadvertently introduced are mine. The principal innovation is to have assembled
in one place the key steps in these proofs.

The subject has progressed during the three years since the bulk of this paper was
written. Most notably, Tsimerman has completed an unconditional proof of the André-
Oort conjecture for A g, the coarse moduli space of principally polarized abelian
varieties of dimension g, using the Pila-Zannier method [79]. The present text retains
the structure and emphases of its 2012 version, but we conclude with a short section
describing the current state of the art.

This paper is organized as follows. In Section 2 we outline the Pila-Zannier strat-
egy. We follow with Section 3 in which we review the basic theory of o-minimality.
In Section 4, the technical heart of this paper, we expose in detail the Pila-Wilkie
counting theorem. Finally, in Section 5 we present some of the details of the proofs
of the diophantine geometric theorems proven with these methods.

Many people have assisted me in writing these notes. I thank in particular Jonathan
Pila and Umberto Zannier for their detailed comments on earlier drafts. I thank
Matthias Aschenbrenner, Philipp Habegger, and Emmanuel Ullmo for enlightening
discussions. I thank the anonymous referees for their close reading and for suggesting
innumerable improvements.

2. Overview of the Pila-Zannier strategy

In this section we shall outline the main steps of the Pila-Zannier strategy for
proving diophantine geometric theorems. Since the surveys [71] and [72] are devoted
exactly to such outlines, we shall be brief here.

We are interested in proving theorems to the effect that if X is a “special” variety (a
Shimura variety, an abelian variety, a moduli space for abelian varieties et cetera) and
Y ⊆ X is an irreducible closed subvariety containing a Zariski dense set of “special”
points (special points in the sense of the theory of Shimura varieties, torsion point,
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CM-moduli points, et cetera), then Y is a “special” subvariety (variety of Hodge-
type, group subvariety, submoduli variety, et cetera). In practice, we must specify the
meaning of the term special (as we have suggested parenthetically). The Pila-Zannier
strategy takes advantage of the theory of o-minimality which is essentially a theory
of real geometry. As such, the technique applies only over the complex numbers, but
one could speculate about extensions of the relevant counting theorems to analytic
geometric situations over other local fields. Indeed, Comte, Cluckers and Loeser have
formulated and proved a version of the Pila-Wilkie counting theorem for sets de-
fined using p-adic analytic functions [12]. Subsequently, Chambert-Loir and Loeser
have shown how to use this nonarchimedian counting theorem to prove functional
transcendence results for maps coming from p-adic analytic uniformizations [11].

The first step in the Pila-Zannier strategy is to realize the complex algebraic variety
X(C) analytically as a coset space. That is, we seek some complex homogenous space
X for the action of some (open subgroup of a) real algebraic group G(R) by analytic
automorphisms so that some analytic function π : X → X(C) represents X(C) as
the quotient Γ\X where Γ ≤ G(R) is an arithmetic subgroup. For example, if X is
an abelian variety over C of dimension g, then X(C), being a complex torus, may
be expressed as Cg/Λ for some lattice Λ. In this case, we would take X = Cg and
G = G2g

a acting via an appropriate real analytic trivialization of Cg as R2g for which
Λ is identified with Z2g. In the case that X = A1 regarded as the j-line, then we could
take

X = h := {τ ∈ C : Im(τ) > 0}
to be the upper half plane, G = PSL2 to be the special linear group acting via
fractional linear transformations, Γ := PSL2(Z) and π := j : X → A1(C) to be the
j-function. The reader might object that as the irreducible closed subvarieties of A1

are not particularly complicated, being either points or the full space, the problem
considered here is trivial. Treat instead X = AN regarded as the moduli space of
products of N elliptic curves, X = hN and π : X→ AN (C) given by

(τ1, . . . , τN ) 7→ (j(τ1), . . . , j(τN ))

Of course, we need to be somewhat careful about how we choose the analytic
covering π : X→ X(C). In particular, we wish to have that the special points in X(C)

come from arithmetically simple points in X. What is meant by arithmetically simple?
We shall ensure that X ⊆ CM is an open subset of some complex affine space. Thus, it
would make sense to ask whether a point in X is rational or algebraic. In practice, we
might like for the special points in X(C) to be the images of the rational points in X,
or possibly just algebraic points in X of some bounded degree. With our example
of X a complex abelian variety, the set of torsion points on X(C) is exactly the
image of Q2g under the analytic covering map. In the case of the j-function giving
a covering of A1(C) by h, the set of special points, the j-invariants of elliptic curves
with complex multiplication, is the image of the quadratic imaginary numbers. In
the general applications of this method, we shall arrange that the set of preimages of
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special points under the covering map be the set of algebraic points in X of degree at
most d over Q for some fixed natural number d.

Once we have found the desired analytic covering map, the problem of describing
the set of special points on the algebraic subvariety Y ⊆ X may be converted to
the problem of calculating the set of algebraic points of degree ≤ d on the analytic
variety Y := π−1Y . On the face of it, such a move converts a difficult problem to an
intractable one as there is very little in general that one can say about the algebraic
points on an analytic variety and the known theorems about the rational points on
algebraic varieties are amongst the deepest in all of mathematics. To exploit this
translation from special points on an algebraic variety to rational (or algebraic of
bounded degree) points on an analytic variety we use the theory of definability in
o-minimal structures. The covering map π : X→ X(C) is almost never definable in a
logically tame structure in any sense, but if we were to restrict π to an appropriate
fundamental domainD ⊆ X then the whole situation is often definable in an o-minimal
expansion of the real numbers.

In the cases we have been considering, o-minimal definability takes on a very con-
crete form. Using real and imaginary parts we identify C with R2, and hence, CN with
R2N . By a semialgebraic set we mean a subset of R2N defined by a finite boolean com-
bination of conditions of the form f(x1, . . . , x2n) ≥ 0 where f is a polynomial with
real coefficients. In the cases we have been considering, the fundamental domain D
may be taken to be semialgebraic. Indeed, when X is a complex abelian variety, then
the natural choice for D would be [0, 1)2g. In the case of the covering of the affine line
by the j-function, the usual fundamental domain,

D := {z ∈ C :
−1

2
≤ Re(z) <

1

2
and |z| ≥ 1},

is easily seen to be semialgebraic. We say that a function is restricted analytic if it is
the restriction of a real analytic function on some open set to a compact box. By an
explicitly definable function we mean the restriction to a semialgebraic domain of a
function built as a composition of polynomials, restricted analytic functions, and the
real exponential function. The covering maps we have been considering are explicitly
definable. In the case of the covering of an abelian variety π : Cg → X(C) since π is
globally analytic and the fundamental domain D is contained in a compact box, one
sees that the restriction of π to D is already the restriction of a restricted analytic
function to a semialgebraic set. For the j-function, one sees from the q-expansion of j,
that the restriction of j to D may be realized as the restriction to a semialgebraic set
of the composite of a restricted analytic function with a function built from restricted
analytic functions and the real exponential function.

At this point we may invoke the Pila-Wilkie counting theorem (or one of its refine-
ments) to say something about the distribution of algebraic points on Ỹ := D ∩Y =

(π � D)−1Y (C). The counting theorem says that after accounting for rational points
which might lie on semialgebraic sets, there are subpolynomially many rational points
on a definable set. Let us be a little more precise.
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