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Abstract. — We consider the Hecke group G4 and the Picard group PSL(2, Z[i]). In

the double of the quotient space of the upper half-space by PSL(2, Z[i]), we find a

double cover of the quotient surface of the upper half-plane by G4. We analyze the

cross section map of the geodesic flow on this surface by using the graphic method of

Adler-Flatto.

Résumé (L’application de premier retour pour les flots géodésiques liés aux groupes de Hecke et
de Picard)

Nous considérons le groupe de Hecke G4 et le groupe de Picard PSL(2, Z[i]). Dans

le double de l’espace quotient du demi-espace supérieur par PSL(2, Z[i]), on trouve

un double revêtement de la surface quotiente du demi-plan supérieur par G4. Nous

analysons l’application de premier retour du flot géodésique sur cette surface en uti-

lisant la méthode graphique d’Adler-Flatto.

1. Introduction

The classical Markoff spectrum for Q has been studied from various points of view:

continued fractions, quadratic forms and geometry. In [1], we gave a geometric inter-

pretation of the Markoff spectrum for Q(i), generalizing the geometric study of the

Markoff spectrum for Q. A point we clarified is that the Picard group PSL(2,Z[i])

naturally contains the Hecke group of order 4, G4 (see §2), and that this subgroup

captures the discrete part of the Markoff spectrum for Q(i).

In the present paper, we discuss the coding of the geodesic flow on a special surface

in the double of the quotient space of the upper half-space H3 by PSL(2,Z[i]). The

special surface can be identified with a double cover of the quotient surface of the

upper half-plane H2 by G4. We show that the codings of the geodesic flows on the
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special surface and on H2/G4 are characterized in a similar way (see §4). Thus, we

find another ‘good’ feature of the Picard group depending on its subgroup G4.

To analyze a cross section map of the geodesic flow on the modular surface, R. Adler

and L. Flatto used a graphic method in [2]. Let us summarize their method. The

geodesic flow on the modular surface is coded by using the endpoints of the geodesic,

which are denoted by η and ξ. Since the universal cover of the modular surface is the

upper half-plane H2 and its boundary is the real line, we have (η, ξ) ∈ (R ∪ {∞})2

and the geodesic is represented by the (η, ξ)-coordinate. Thus, the cross section

map (first return map) can be simply expressed in the (η, ξ)-plane, where the cross

section is the set of outward unit vectors whose base points are on the boundary of

the usual fundamental domain of the modular group. Because of the shape of the

domain, it is called the curvilinear map. Even if this coding is natural, it does not

have a Markovian partition. By a simple geometrical recoding, the rectilinear map

is obtained from the curvilinear map. Its domain is composed of rectilinear regions.

The vertical and horizontal directions are contracting and expanding, respectively,

under the rectilinear map. That is, the rectilinear map has a Markovian partition.

Moreover, there is a conjugacy map between the curvilinear and the rectilinear maps

which is the identity on most of its domain.

We apply Adler and Flatto’s method to analyze a cross section map of the geodesic

flow on our surface, i.e., the immersion of the double cover of H2/G4 in the double

of H3/PSL(2,Z[i]). Note that H2/G4 is one of the natural generalizations of the

modular surface. We proceed as follows: in §3 we express the Poincaré return map

of a cross section of the geodesic flow on our surface by using the endpoints of the

geodesics (to define a curvilinear map TC); in §4 we construct its linearized version

(to define a rectilinear map TR), and find a conjugacy map Φ between them. The

conjugacy map Φ is the identity on most of the set on which it is defined. (The

same situation arises with the geodesic flow on the modular surface.) This fact is

stated in Theorem 4.1, which is our main result. Note that the cross section map

we obtain corresponds to a continued fraction expansion of complex numbers whose

partial quotients are of the form k(1 + i) and k(1− i), k ∈ Z.

In the construction of the conjugacy map, we clarify the relations between some of

the generators of the Picard group. The graphs (see Figures 2 and 3) used in this paper

are more complicated than the corresponding ones for the modular surface (see [2]).

That means that a Markovian partition of our geodesic flow is more complicated than

the one of the geodesic flow in the modular surface. An interest of the graphic method

is that it makes the difference intelligible.

For the geodesic flow in the quotient surface H2/G4, it is also possible to construct

the curvilinear map, the rectilinear map and the conjugacy map between them. The

construction of these maps is almost the same, as we produce in §3 and §4. We only
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write down these maps in a remark after Theorem 4.1. Note that these maps and their

graphs are almost the same as the ones for the geodesic flow on the special surface in

the 3-manifold.

The author thanks the referee for helpful suggestions.

2. Hecke group, Picard group

We begin by introducing the groups and spaces which we will use in this paper.

We always identify a point (x, y) in R2 with x + yi and a point (x, y, t) in R3 with

x + yi + tj, where i2 = j2 = −1. The upper half-plane {z = x + iy ∈ C | y > 0} is

denoted by H2 and the upper half-space {z + jt | z ∈ C, t > 0} is denoted by H3.

Suppose that they are endowed with the hyperbolic metrics ds2 = (dx2 +dy2)/y2 and

ds2 = (dx2 + dy2 + dt2)/t2, respectively.

The Hecke group G4 is generated by two elements (see [5])

G4 :=

〈
A :=

(
0 −1

1 0

)
, P :=

(
1
√

2

0 1

)〉
.

The Picard group Γ is generated by A, T , U and L. It is denoted by Γ = 〈A, T, U, L〉,
where

T :=

(
1 1

0 1

)
, U :=

(
1 i

0 1

)
, L :=

(
i 0

0 −i

)
.

The Picard group is also represented by Γ = PSL(2,Z[i]), where Z[i] is the set of

complex integers (see [4]). The group G4 acts on H2 by fractional linear transforma-

tions. The group Γ acts on C by fractional linear transformations and on H3 by their

Poincaré extensions (see [3]). In what follows we always identify an element g ∈ G4

with the fractional linear transformation and an element g ∈ Γ with the fractional

linear transformation or its Poincaré extension induced by g.

The Hecke group G4 acts on H2 discontinuously and a fundamental domain of G4

can be represented as follows:

F4 :=

ß
x+ iy ∈ H2 | x2 + y2 > 1, |x| < 1√

2

™
,

where |x| denotes the absolute value of x. Topologically this is the same as the

modular surface, that is, a sphere minus a point. There are two singular points on the

quotient surface F4: i and (−1+ i)/
√

2, this latter is identified with (1+ i)/
√

2. Their

ramification numbers are 2 and 4, respectively, which come from A2 = (AP )4 = Id.

The latter is different from the singular point on the modular surface coming from

(AT )3 = Id.
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The Picard group Γ acts on H3 discontinuously and a fundamental region of Γ can

be represented as follows:

F :=

ß
x+ iy + jt ∈ H3 | x2 + y2 + t2 > 1, |x| < 1

2
, 0 < y <

1

2

™
.

The region F has a single parabolic vertex at ∞ and has a finite volume. (See

Example 15 in [6].) Then F̂ = F ∪ LF is a fundamental region of 〈A, T, U〉. We call

F̂ the fundamental polyhedron.

Define lines l1, l2 on C as l1 := {(x, y, 0) | x = y}, l2 := {(x, y, 0) | x = −y} and

define planes Ŵ1, Ŵ2 in H3 as Ŵ1 := {(x, y, t) | x = y, t > 0}, Ŵ2 := {(x, y, t) |
x = −y, t > 0}. Note that l1, l2 are boundaries of Ŵ1, Ŵ2, respectively. Take the

following two matrices:

M1 :=

Ñ
1√
2
(1 + i) 0

0 1

é
, M2 :=

Ñ
1√
2
(1− i) 0

0 1

é
.

They give identifications between the planes Ŵ1, Ŵ2 and the upper half-plane H2.

Indeed,

H2 3 x+ it←→M1(x+ jt) =
1√
2

(1 + i)x+ jt ∈ Ŵ1,

H2 3 x+ it←→M2(x+ jt) =
1√
2

(1− i)x+ jt ∈ Ŵ2.

Under this identification, if we use the coordinates x + it, Ŵ1 and Ŵ2 are denoted

simply by W1 and W2, respectively. Define k̂ = k+1 (mod 2), k̂ ∈ {1, 2} for k ∈ {1, 2}.
We consider the action on Ŵk defined by the following matrices:

P±1 = ±TU =

(
1 ±(1 + i)

0 1

)
, P±2 = ±TU−1 =

(
1 ±(1− i)
0 1

)
.

Lemma 2.1

(i) The action of A switches the planes Ŵ1 and Ŵ2, that is, AŴk = Ŵk̂.

(ii) The action P±k is a parallel displacement on Ŵk and satisfies P±k Ŵk = Ŵk.

(iii) The action P±k on Ŵk is equivalent to the action P on Wk.

Proof. — The assertions (i) and (ii) are easily checked by a calculation. For (iii) we

can easily check that for x+ it ∈ H2, P (x+ it) is identified with P+
k Mk(x+ jt).

The intersection of Ŵ1 ∪ Ŵ2 with the fundamental polyhedron F̂ can be identified

with two sheets of the fundamental domain F4, that is, F41 ∪ F42, where F4k denotes

the domain F4 on Wk. Moreover, F41 ∩ F42 and the boundary of F41 ∪ F42 are the

lines from the singular points to ∞, i.e., the vertical lines which lie over 0 ∈ C and

(1 + i)/2. The point (1 + i)/2 is identified with (−1 + i)/2, (−1− i)/2 and (1− i)/2
by the action of T and U .
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