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Abstract. — The case of equality between the Minkowski and Hausdorff dimension for

the graphs of Weierstrass-like functions, remains largely mysterious. However signif-

icant progresses have been obtained when the graph is self-affine: for instance the

analysis of the limit Rademacher function by Przytycki & Urbański shows how this

question is concerned with the arithmetics of the Pisot-Vijayaraghavan (PV) numbers

and an Erdős problem about the so-called Infinite Convolution Bernoulli Measures

(ICBMs). A related question is to understand the fine multifractal/dynamical struc-

tures of the special ICBM associated with the golden number and called the Erdős

measure: from this point of view, we answer a question of Sidorov and Vershik about

the Gibbs nature of the invariant Erdős measure.

Résumé (Problèmes de dynamique liés à la géométrie fractale de certaines convolution d’une in-
finité de mesures de Bernoulli en base de Pisot-Viraraghavan)

Le cas d’égalité entre la dimension de Minkowski et la dimension de Hausdorff du

graphe des fonctions à la Weierstrass, demeure toujours mystérieux. Cependant, des

progrès significatifs ont été réalisés pour certains graphes autoaffines: par exemple,

pour les fonctions de Rademacher, Przytycki & Urbański, montrent comment cette

question est liée à l’arithmétique des nombres de Pisot-Vijayaraghavan (PV): on re-

trouve alors un problème d’Erdős sur certaines convolutions d’une infinité de mesures

de Bernoulli (convolutions de Bernoulli). Une question attenante est de comprendre

la structure multifractale de la mesure d’Erdős i.e. la convolution de Bernoulli asso-

ciée au nombre d’or: de ce point de vue, nous répondons à une question posée par

Sidorov et Vershik à propos de la nature gibbsienne de la mesure d’Erdős invariante.
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Introduction

Let α, β > 1 be two real numbers with α/β > 1 and note Γ the graph of the

celebrated Weierstrass function (1872), W : [0 ; 1]→ R such that

W (x) =
∞∑
n=0

1

βn
cos(2παnx) ;

The function W is a classical example of a continuous nowhere differentiable map,

which makes its graph Γ an interesting object of Fractal Geometry. We fix α = 2 and

include in our presentation the class of the Weierstrass-like functionsWβ : [0 ; 1]→ R

such that

Wβ(x) =
∞∑
n=0

1

βn
ϕ(2nx),

where 1 < β < 2 and ϕ : R→ R is a Z-periodic function: in what follows Γβ stands

for the graph of Wβ . When ϕ is Lipschitz continuous, Wβ turns out to be Hőlder

continuous of exponent log β/ log 2; the Hőlder exponent is then directly related to a

classical upper-bound of the Minkowski dimension (box counting dimension), that is

dimM Γβ ≤ 2− log β/ log 2. However, even if a Weierstrass-like function need not be

continuous, the Minkowski dimension provides a general upper-bound of the Hausdorff

dimension, so that [29, 37]:

(1) dimH Γβ ≤ 2− log β

log 2
.

The case of equality in (1) is a delicate problem still open for the Weierstrass functions.

Among partial results for the Weierstrass-like functions, two significant progresses

are concerned with self-affine graphs, the first one by Przytycki & Urbański [37] for

the limit Rademacher functions, the second one by Ledrappier [25] for the Takagi

functions. In both cases the problematic equality in (1) is proved to be related to

an Erdős problem [2, 5, 11, 16, 18, 43] about the family of probability measures

νβ (1 < β < 2), and called Infinite Convolution of Bernoulli Measures (ICBMs): in

Section 1, we focus our attention on the limit Rademacher functions to see how the

arithmetic of β is involved and more precisely how PV-numbers yields strict inequality

in (1).

The multifractal analysis of the measures νβ is supposed to give precious informa-

tions about the fractal properties of νβ and Γβ ; however, the task is difficult and only

few results have been established. Section 2 is devoted to the statement of the mul-

tifractal formalism satisfied by the Erdős measure, that is ν = νβ for β = (1 +
√

5)/2

[10, 23, 26] (we refer to [7, 9, 31] for multifractal analysis of νβ , for other PV-

numbers β).

Following the seminal work of Alexander & Yorke [2] about the so-called Fat

Baker’s Transformation, a detailed analysis of dynamical/ergodic properties of

the Erdős measure is given by Sidorov & Vershik [42]; in particular, it is proved
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Figure 1. Graph Γ of the Weierstrass function W for α = 2 and β = (1 +√
5)/2: here dimM Γ = 2 − log β/ log 2. The exact value of the Hausdorff

dimension dimH Γ is still unknown.
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Figure 2. Graph of the Takagi function Wβ with β = (1 +
√

5)/2 and

ϕ(x) = 1−dist(x,Z). By a result of Ledrappier [25], dimM Γβ = dimH Γβ

when the ICBM νβ has Hausdorff dimension 1, which [43] arises for

almost all β.
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[42, Corollary 1.9] that there exists a unique probability measure ν′ invariant w.r.t.

multiplication by β (mod 1) and equivalent to ν. In Section 3 we present the result

of Sidorov & Vershik about the measure ν′, leading to the statement of our main

result, Theorem 4.2, which answers a question in [42, Remark p. 222] about the

Gibbs nature of ν′; the proof of Theorem 4.2, given in Section 4, makes use of Kac

Recurrence Theorem, Abramov Formula and Thermodynamic Formalism for infinite

alphabet shift spaces [28, 40, 44].

1. Limit Rademacher functions and ICBMs

Consider for any i ∈ {0,1}, the affine contraction Ai : R2 → R2 such that

Ai(x, y) := A(x, y) + iV , where A and V are identified to their matricial form, that

is:

A :=

(
1/2 0

0 1/β

)
and V =

(
1/2

1/β2

)
.

Let A : Ω := {0,1}N → R2 be the map such that A(ξ) is the limit of Aξ0···ξn−1
(0, 0),

when n goes to infinity that is, A(ξ) = (X(ξ),Y(ξ)), where

X(ξ) =
∞∑
k=0

ξk/2
k+1 and Y(ξ) = (β − 1)

∞∑
k=0

ξk/β
k+1.

It is easily seen that Y(ξ) = Wβ(X(ξ)), where Wβ is the Weierstrass-like function

associated to the Z-periodic function ϕ : x 7→ ([2x]− 2[x])/(1− 1/β) (the coefficient

1 − 1/β is introduced for notational convenience). In particular, this means that

A(Ω) coincides with the graph Γβ of Wβ or equivalently, that Γβ is the self-affine set

such that Γβ = A0(Γβ)
⋃
A1(Γβ). There exists a natural expanding transformation

T : Γβ → Γβ , whose inverse branches are the affine contractions A0 and A1 meaning

that T (x,Wβ(x)) = A−1
i (x,Wβ(x)), with i = 0 if 0 ≤ x ≤ 1/2 and i = 1 other-

wise. In order to study the fractal geometry of Γβ , it is worth to consider the good

positive measure supported by Γβ : here we define the distribution µβ of the random

variable A : Ω → R2 when Ω is weighted by the uniform Bernoulli measure P. The

probability measure µβ is T -ergodic (with metric entropy hµβ (T ) = log 2) and accord-

ing to Hutchinson Theorem [15], [6, Thm. 2.8], it is the unique probability measure

satisfying the self-affine equation

(2) µβ =
1

2
µβ ◦A−1

0 +
1

2
µβ ◦A−1

1 .

Now, consider the orthogonal projections πx : R2 → R×{0} and πy : R2 → {0}×R.

(In what follows R × {0} and {0} ×R are both identified to R.) On the one hand,

µβ ◦π−1
x is the distribution of the random variable X on (Ω,P) that is, the restriction
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