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Abstract. — These notes were used as part of the Spring School “École Plurithéma-

tique de Théorie Ergodique II” Luminy, April 2006. They focus on the properties of

unimodal maps, their description in terms of kneading maps, and the behavior of the

unimodal map restricted to the omega-limit set ω(c) of its critical point if this is a

Cantor set. Major references are [2, 7, 8, 20].

Résumé (Combinatoire pour les applications unimodales (du type de Fibonacci))
Ces notes ont été utilisées dans les cours de l’École Plurithématique de Théo-

rie Ergodique II, Luminy, Avril 2006. Elles traitent les propriétés des applications

unimodales, leur description en termes d’applications de pétrissage, et le comporte-

ment d’une application unimodale restreinte à l’ensemble ω-limite ω(c) de son point

critique dans le cas où ω(c) est un ensemble de Cantor. Les réferences principales

sont [2, 7, 8, 20].

1. Combinatorics of Unimodal Maps

A unimodal map f : I → I on the interval is a continuous map having a unique

point c, the critical point, such that f is increasing to the left and decreasing to the

right of c. Let cn = fn(c) be the n-th image of the critical point. It is convenient

to scale f such that the interval coincides with the core: I = [c2, c1], and unless

c2 < c < c1 and c2 ≤ c3, the dynamics of f are not very interesting.

The results that we state here hold for the family of unimodal maps

fa(x) = 1− a|x|`, a ∈ [0, 2].
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18 H. BRUIN

Here c = 0 is the critical point and ` is the order of the critical point. If ` = 1, then

fa is the tent family; if ` = 2 then fa is the quadratic family. The core of fa is the

interval I = [c2, c1] = [1− a, 1]. If a ∈ [1, 2], then fa is onto on this interval; if a < 1,

then every point in [−1, 1] is attracted to a fixed point.

1.1. Symbolic dynamics. — The system (I, f) can be described symbolically by a sub-

shift of {0, ?, 1}N where each x ∈ I is assigned an itinerary i(x) = i0(x)i1(x)i2(x) . . .

where

ik(x) =


0 if fk(x) ∈ [c2, c),

? if fk(x) = c,

1 if fk(x) ∈ (c, c1].

If Σ is the collection of all itineraries, and σ is the left-shift, then the below diagram

commutes.

Σ - Σ
σ

? ?
i i

I - I
f

Take x /∈ orb−(c) := ∪j≥0f
−j(c), i(x) ∈ {0, 1}N. For each k, the set

Jk(x) := {y ∈ I : i0(y) . . . ik−1(y) = i0(x) . . . ik−1(x)}

is an open interval; it is a maximal open neighborhood on which fk is monotone.

It can happen that there are several points with the same itinerary. In this case,

H = ∩kJk(x) is a non-degenerate interval; it is called a homterval, because fk : H →
fk(H) is a homeomorphism for every k. If f is a non-flat (i.e., the critical order is

finite) C2-map, then any homterval is attracted to a periodic orbit or interval, [20].

This has the following convenient consequence:

Lemma 1. — If f has no wandering intervals or periodic attractor, then for every

ε > 0 there is a δ > 0 such that if J is an interval of length |J | > δ, then |fn(J)| > ε

for all n ≥ 0.

Proof. — See [20, Chapter IV], where this property is called the Contraction Princi-

ple, although Non-contraction Principle seems a better word.

The kneading invariant is defined as the itinerary of the critical point, leaving out

the initial ?:

ν = νf = ν1ν2ν3 . . .
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Two unimodal maps are combinatorially equivalent if they have the same kneading

invariant. If f and g are topologically conjugate, then they are combinatorially equiv-

alent, but the converse is not true. The kneading invariant fails to notice:

– Inessential periodic attractors, i.e., periodic attractors that don’t attract the

critical point. Recall that if f has negative Schwarzian derivative, or more precisely

Sf(x) := f ′′′(x)
f ′(x) −

3
2
f ′′′(x)
f ′(x) ≤ 0 for every non-critical point x, then every periodic

attractor attracts a critical point or boundary point, see [21]. In our case, we restricted

the map to the core, so the boundary points belong to the critical orbit. Hence in

this setting, every periodic attractor is essential.

– Wandering intervals, which however don’t exist if f is non-flat and C2, see [20,

Chapter IV].

– The precise period of a periodic attractor generated in a period doubling bifur-

cation. For example, if a1 < a2 are parameters just before and after the first period

doubling bifurcation creating a periodic attractor of period 2. Then in both cases

νf = 1111 . . . , regardless whether ω(c) consist of a single or two points in (c, c1]. The

kneading invariant indicates this difference in period only when one of these period 2

points passes through c, as parameter a increases.

Two itineraries i and i[ can be compared in parity lexicographical order ≺p. First

set 0 < ? < 1. If k = min{j ≥ 0 : ij 6= i[j} then

i ≺p i[ if

{
ik < i[k and #{j < k : ij = 1} is even,

ik > i[k and #{j < k : ij = 1} is odd.

Lemma 2 (See [8]). — The map i : I → Σ, x 7→ i(x) is order preserving.

Corollary 1. — Given a unimodal map f with kneading invariant ν,

(1) σ(ν) �p i(x) �p ν for all x ∈ I.

and

(2) σ(ν) �p σn(ν) �p ν for all n ≥ 0.

Conversely, we have:

Lemma 3

– Fix f : I → I with kneading invariant ν. If e ∈ {0, 1}N is a sequence such

that (1) holds, then there is x ∈ I such that i(x) = e.

– If ν ∈ {0, 1}N is a sequence such that (2) holds, then there is a unimodal map f

such that ν = νf .
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For this reason, equation (2) is called the admissibility condition for kneading in-

variants. A map f is renormalizable if there is an interval J 3 c and period p such

that fp(J) ⊂ J and f i(J) and f j(J) have disjoint interiors for 0 ≤ i < j < p. In this

case, the map fp : J → J is a new unimodal map, which can be renormalizable itself.

Continuing inductively, we can arrive at infinitely renormalizable maps which have

an infinite sequence of nested periodic interval Jn 3 c of periods pn → ∞. The best

known example is the Feigenbaum-Coullet-Tresser map (usually called Feigenbaum

map) which has a periodic interval Jn of period 2n for each n ∈ N.

Renormalizability can be seen from the structure of the kneading invariant by the

fact the ν has the structure of a star-product.

Proposition 1. — Let f have a p-periodic interval J such that the itinerary of c starts

with ?i1 . . . ip−1. Let fp : J → J be a unimodal map with kneading invariant ν̃. Then

the kneading invariant of f itself is

(3) ν =

{
i1 . . . ip−1ν̃1i1 . . . ip−1ν̃2i1 . . . ip−1ν̃3 . . . if #{j < k : ij = 1} is even,

i1 . . . ip−1ν̃
′
1i1 . . . ip−1ν̃

′
2i1 . . . ip−1ν̃

′
3 . . . if #{j < k : ij = 1} is odd.

Here ν̃′k = 1, ?, 0 if ν̃k = 0, ?, 1 respectively.

The sequence ν defined by (3) is known as the star-product of ?i1 . . . ip−1 and ν̃,

and written as ν = (?i1 . . . ip−1) ∗ ν̃, see [8].

1.2. Cutting times. — If J is a maximal (closed) interval on which fn is monotone,

then fn : J → fn(J) is called a branch. If c ∈ ∂J , fn : J → fn(J) is a central

branch. Obviously fn has two central branches, and they have the same image if n is

sufficiently large. Denote this image (or the largest of the two) by Dn.

If Dn 3 c, then n is called a cutting time. Denote the cutting times by {Si}i≥0,

S0 < S1 < S2 < . . . For interesting unimodal maps (such as tent maps with slope > 1

or fa with a ∈ (1, 2]) S0 = 1 and S1 = 2.

Lemma 4. — Let β(n) = n−max{Sk : Sk < n}. Then

(4) Dn = [cn, cβ(n)] or [cβ(n), cn] for all n ≥ 2,

and Dn ⊂ Dβ(n).

Proof. — For simplicity write [x, y] for the interval with endpoints x and y, even

if y < x. We prove (4) by induction. Since D2 = [c2, c1], it holds for n = 2.

Next assume that (4) holds for n. If Dn 63 c (so n is not a cutting time), then

Dn+1 = f(Dn) = [cn+1, c1+β(n)]. But β(n + 1) = n + 1 − max{Sk : Sk < n + 1} =

n + 1 − max{Sk : Sk < n} = 1 + β(n). So the above interval is [cn+1, cβ(n+1)]. If

on the other hand Dn 3 c, then Dn+1 = [cn+1, c1], but β(n + 1) = 1, so (4) holds

for n+ 1. This proves the first statement.
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