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Frédéric Robert

Abstract. — We consider the optimal Hardy-Sobolev inequality on a smooth bounded
domain of the Euclidean space. Roughly speaking, this inequality lies between the
Hardy inequality and the Sobolev inequality. We address the questions of the value
of the optimal constant and the existence of non-trivial extremals attached to this
inequality. When the singularity of the Hardy part is located on the boundary of the
domain, the geometry of the domain plays a crucial role: in particular, the convexity
and the mean curvature are involved in these questions. The main difficulty to
encounter is the possible bubbling phenomenon. We describe precisely this bubbling
through refined concentration estimates. An offshot of these techniques allows us to
provide general compactness properties for nonlinear equations, still under curvature
conditions for the boundary of the domain.

Résumé (Extrémaux pour les inégalités Hardy-Sobolev : l’influence de la courbure)
Nous considérons l’inégalité de Hardy-Sobolev optimale sur un domaine borné

régulier de l’espace euclidien. Cette inégalité se situe entre l’inégalité de Hardy et
celle de Sobolev. Nous abordons la question de l’optimalité des constantes attachées
à cette inégalité ainsi que l’existence de solutions extrémales non triviales. Quand la
singularité de la partie Hardy de l’inégalité est localisée sur le bord du domaine, la
géométrie du domaine joue un rôle crucial: en particulier la convexité et la courbure
moyenne sont impliquées dans ces questions. La principale difficulté à contourner est
la possibilité d’existence de phénomène de concentration. Nous décrivons précisément
ce type de phénomène par des estimées de concentration fines. Une ramification de
ces techniques nous permet de fournir des propriétés générales de compacité pour des
équations non linéaires, sous des conditions de courbure sur le bord.
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2 F. ROBERT

1. The Hardy-Sobolev inequality and two questions

We consider the Euclidean space Rn, n ≥ 3. The famous Sobolev theorem asserts
that there exists a constant C1(n) > 0 such that

(1)
Å∫

Rn
|u|

2n
n−2 dx

ãn−2
n

≤ C1(n)

∫
Rn
|∇u|2 dx

for all u ∈ C∞c (Rn). Another very famous inequality is the Hardy inequality, which
asserts that there exists C2(n) > 0 such that

(2)
∫

Rn

u2

|x|2
dx ≤ C2(n)

∫
Rn
|∇u|2 dx

for all u ∈ C∞c (Rn). Interpolating these two inequalities, one gets the Hardy-Sobolev
inequality: more precisely, let s ∈ [0, 2], then there exists C(s, n) > 0 such that

(3)
Ç∫

Rn

|u|2?(s)

|x|s
dx

å 2
2?(s)

≤ C(s, n)

∫
Rn
|∇u|2 dx

for all u ∈ C∞c (Rn), where

2?(s) :=
2(n− s)
n− 2

.

Indeed, with s = 0, we recover the Sobolev inequality (1), and with s = 2, we recover
the Hardy inequality (2). The Hardy-Sobolev inequality is a particular case of the
family of functional inequalities obtained by Caffarelli-Kohn-Nirenberg [8]. When
s ∈ (0, 2), it is remarkable that the Hardy-Sobolev inequality inherites the singularity
at 0 from the Hardy inequality and the superquadratic exponent from the Sobolev
inequality. For completeness and density reasons, given Ω an open subset of Rn, it is
more convenient to work in the Sobolev space

H2
1,0(Ω) := Completion of C∞c (Ω) for ‖ · ‖

where ‖u‖ :=
(∫

Ω
|∇u|2 dx

)1/2. Therefore, inequality (3) is valid for u ∈ H2
1,0(Ω).

Following the programme developed for other functional inequalities, we saturate
(3): given Ω an open subset of Rn, we define

µs(Ω) := inf
u∈H2

1,0(Ω)\{0}
IΩ(u), where IΩ(u) :=

∫
Ω
|∇u|2 dxÄ∫

Ω
|u|2?(s)

|x|s dx
ä .

It follows from the Hardy-Sobolev inequality that µs(Ω) > 0. We address the two
following questions:

Question 1. — What is the value of µs(Ω)?

Question 2. — Are there extremals for µs(Ω)?
That is: is there some uΩ ∈ H2

1,0(Ω) \ {0} such that IΩ(uΩ) = µs(Ω)?
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The main difficulty here is due to the fact that 2?(s) is critical from the viewpoint of
the Sobolev embeddings. More precisely, if Ω is bounded, then H2

1,0(Ω) is embedded
in the weighted space Lp(Ω, |x|−s) for 1 ≤ p ≤ 2?(s). And the embedding is compact
iff p < 2?(s) (in general, at least... see subsection 2.3 below). This lack of compactness
defeats the classical minimization strategy to get extremals for µs(Ω). In fact, when
s = 0, that is in the case of Sobolev inequalities, the same kind of difficulty occurs,
and there have been some methods developed to bypass them. Concerning the same
questions in the Riemannian context, we refer to Hebey-Vaugon [23] and Druet [10],
and also to Aubin-Li [4].

2. A few answers in some specific cases

In this section, we collect a few facts and answers to questions 1 and 2: these
results are essentially extensions of the methods developed in the case s = 0.

2.1. The case s = 0. — In this context, the situation is well understood. In particular,

µ0(Rn) = n(n− 2)

(
ωn−1

2
·

Γ
(
n
2

)2
Γ(n)

) 2
n

=
n(n− 2)ω

2/n
n

4

where ωk is the volume of the standard k−sphere of Rk+1 and Γ is the Gamma
function. The extremals exist and are known: indeed, u ∈ H2

1,0(Rn) \ {0} is an
extremal for µ0(Rn) if and only if there exist x0 ∈ Rn, λ ∈ R \ {0}, α > 0 such that

(4) u(x) = λ

Å
α

α2 + |x− x0|2

ãn−2
2

for all x ∈ Rn.

These results are due to Rodemich [28], Aubin [3] and Talenti [30]. We also refer to
Lieb [24] and Lions [25] for other nice points of view.

Concerning general open subsets of Rn, one can show that

µ0(Ω) = µ0(Rn) =
n(n− 2)ω

2/n
n

4

for all Ω open subset of Rn. Moreover, if there is an extremal for µs(Ω), then it is
also an extremal for µ0(Rn) and it is of the form of (4). In particular, there is no
extremal for µs(Ω) if Ω is bounded (more general conditions involving the capacity
are available).

From now on, we concentrate on the case s ∈ (0, 2). Here, due to the singularity at
0, the situation will depend highly on the location of 0 with respect to Ω
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2.2. The case 0 ∈ Ω, s ∈ (0, 2). — Here again, when Ω = Rn, the constant µs(Ω) is
explicit, and we know what the extremals are (see Ghoussoub-Yuan [19], Lieb [24],
we refer also to Catrina-Wang [9]). More precisely,

µs(Rn) = (n− 2)(n− s)
Ç
ωn−1

2− s
·

Γ2(n−s2−s )

Γ( 2n−2s
2−s )

å 2−s
n−s

and given α > 0, the functions

uα(x) :=

Ç
α

2−s
2

α2−s + |x|2−s

ån−2
2−s

are extremals for µs(Rn), and u ∈ H2
1,0(Rn) \ {0} is an extremal for µs(Rn) iff there

exists λ ∈ R \ {0} and α > 0 such that u = λ · uα. When s = 0, we recover some of
the extremals for the standard Sobolev inequality. Here, it is important to note the
following asymptotics for uα when α→ 0:

lim
α→0

uα(0) = +∞ and lim
α→0

uα(x) = 0 for all x 6= 0.

In other words, the function uα concentrates at 0 when α→ 0.

When dealing with an open subset Ω of Rn such that 0 ∈ Ω, one can follow the
approach developed for s = 0. Indeed, it follows from the definition of µs(Ω) that

µs(Ω) ≥ µs(Rn).

The reverse inequality is obtained via the estimate of IΩ at a suitable test-function.
Indeed, let η ∈ C∞c (Ω) such that η(x) ≡ 1 in a neighborhood of 0. Then ηuα ∈ C∞c (Ω).
Simple computations then yield

IΩ(ηuα) = µs(Rn) + o(1)

where limα→0 o(1) = 0. It then follows that µs(Ω) ≤ µs(Rn), and then

µs(Ω) = µs(Rn).

Indeed, this is exactly the standard proof in the case s = 0. Concerning the extremals,
the same argument as for s = 0 proves that there is no extremal for µs(Ω) if Ω is
bounded. To conclude, one can say that the case s ∈ (0, 2) when 0 ∈ Ω is quite similar
to the case s = 0.

2.3. The case 0 6∈ Ω, s ∈ (0, 2). — This case is not the most interesting. Indeed,
when 0 6∈ Ω and Ω is bounded, then L2?(s)(Ω, |x|−s) = L2?(s)(Ω) and the embedding
H2

1,0(Ω) ↪→ L2?(s)(Ω) is compact since 1 ≤ 2?(s) < 2n
n−2 . Therefore, the standard

minimization methods work and there are extremals for µs(Ω). However, finding the
explicit value of µs(Ω) is almost impossible in general.
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