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Abstract. — We consider the mean curvature flow Ft : M → N of hypersurfaces
in a Riemannian manifold N . The stationary solutions of this flow are the minimal
surfaces in N . Other interesting solutions are those, which move along the integral
curves of a smooth vector field X of N . In this way conformal vector fields X give raise
to self-similarly shrinking solutions of the mean curvature flow. If X is even parallel
then the corresponding solutions of the mean curvature flow are called isometric
solitons or just solitons. Soliton solutions have attracted increasing attention in the
past years since they are interesting objects for a number of reasons: solitons appear
as blow ups of singularities and exhibit interesting geometric and analytic properties.
They serve as tailor-made comparison solutions and allow a certain insight into the
behaviour of the mean curvature flow viewed as a dynamical system.

Résumé (Solitons issus du flot par la courbure moyenne). — Nous considérons le flot de la
courbure moyenne Ft : M → N d’hypersurfaces dans une variété riemannienne N .
Les solutions stationnaires de ce flot sont les surfaces minimales dans N . D’autres
solutions intéressantes sont celles qui se déplacent le long de courbes intégrales d’un
champ de vecteur lisse X dans N . De cette manière les champs de vecteurs con-
formes X engendrent des solutions autosimilaires contractantes du flot de la courbure
moyenne. Si X est parallèle alors les solutions correspondantes au flot de la courbure
moyenne sont appelées solitons isométriques ou juste solitons. Il y a un intérêt crois-
sant ces dernières années pour les solutions solitons car ce sont des objets intéressants
pour diverses raisons: les solitons apparaissent comme des éclatements de singular-
ités et font apparaître des propriétés géométriques et analytiques intéressantes. Elles
servent comme des solutions de comparaison sur mesure et donnent une certaine idée
du comportement du flot de la courbure moyenne vu comme un système dynamique.

1. Introduction

Physicists investigated in the fifties of the twentieth century the annealing process
of aluminum. They observed, that in melted aluminum, at random points the material
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starts to crystallize spontaneously, as the temperature reaches a critical level. In these
points, homogeneous crystals with face centered cubic lattice start to grow. These
grains finally touch each other and fill the space (see Figure 1). However, this is not the
end of the process: atoms sitting at the edge of a grain are integrated in their atomic

Figure 1. Grains in aluminum: a typical grain size is around 10 micro-
meter, the lattice parameter of aluminum amounts to 4.05 10−7m.

crystal lattice only to one side and are therefore in a slightly elevated energy state.
On account of this, such an atom can spontaneously jump to the neighboring lattice.
This change is the more likely, the more convex the boundary at this point is: if, e.g.,
the atom is sitting at a cusp, it is surrounded almost entirely by a “foreign” crystal
grid and will therefore easily change its affiliation. By the described mechanism,
the grain boundaries keep moving even after the metal has solidified. It has been
observed, that the velocity of a grain boundary is proportional to its mean curvature.
This is plausible, if we assume that the elevated energy state of the boundary atoms
amounts to a surface energy which is isotropic and proportional to the surface area.
The system, trying to minimize its energy, will therefore reduce this surface, and the
first variation of the area functional corresponds just to the mean curvature vector
field. This means, the system reduces its energy by moving the grain boundaries with
a velocity which is (proportional to) the mean curvature in each point. This is the
mean curvature flow.

Mathematically, the mean curvature flow has first been investigated 1978 by Brakke
(see [4]), later by Huisken (see [12]). Brakke used geometric measure theory, Huisken
a more classical, differential geometric approach. In order to describe singularities
of the flow, Osher-Sethian introduced a level-set formulation for the mean curvature
flow (see [18]), which was investigated later by Evans-Spruck (see [6], [7], [8], [9])
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and Chen-Giga-Goto (see [5]) in detail. Ilmanen revealed in [14] the relation between
the level-set formulation and the geometric measure theory approach.

In this article, we use the following model of the mean curvature flow: let N be a n-
dimensional Riemannian manifold with a metric ḡ and M a differentiable, connected
m-dimensional manifold with m = n − 1. Let Ft : M → N, t ∈ [0, T [, T > 0, be a
smooth family of immersions from M to N . Then we say:

Definition 1.1. — The family Ft is a solution of the mean curvature flow on [0, T [, T >

0, if
d

dt
Ft = −Hν on M×]0, T [(1)

F0 = f on M,

where f : M → N describes a given initial hypersurface M0. H denotes the mean
curvature of Ft(M) with respect to the unit normal vector field ν on Ft(M). ♦

The minus sign in (1) causes the flow to decrease area (or arc length in the case of
curves). We also remark that the product Hν is independent of the chosen orientation
of ν (see (6)–(7) below). H can be interpreted as the trace of the second fundamental
form of the immersion, and Hν as the first variation of the area functional. The term
Hν can also be written as ∆Ft(M)Ft, which is the Laplace-Beltrami operator on M
with respect to the pull back by Ft of the metric on N . In this form, the parabolic
nature of the equation becomes apparent. However, the operator evolves in time
together with the solution. Nonetheless, classical solutions of the mean curvature
flow, inherit a parabolic comparison principle:

Comparison principle. — If the initial surfaces F0(M) and G0(M ′) are disjoint, so
are the solutions Ft(M) and Gt(M ′) as long as they exist classically.

This comparison principle allows already to make some qualitative statements re-
garding the behaviour of solutions of the mean curvature flow. The following example
in N = R3 is due to Angenent: the two spheres S in Figure 2 have the same radius

D

S S

Figure 2. Four initial surfaces
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R. Subject to the mean curvature flow, they shrink in time TS = R2

2 dimS to a point.
Between the two spheres, there is a special torus D which has the property, that it
shrinks self similarly to a point. Such a torus has been found in 1992 by Angenent
(Angenent’s doughnut, see [3]). Choosing the torus small enough to be enclosed by
a sphere of radius r < R, its vanishing time TD is strictly less than TS . Finally, we
thread a dumbbell surface around the two spheres S through the torus D. The com-
parison principle guarantees that the configuration stays disjoint during its evolution
under the mean curvature flow. Therefore, after a certain time, the solution looks as
indicated in Figure 3. At the latest at time TD the torus strangles the neck of the

Figure 3. Solution at time t < TD

dumbbell (see Figure 4) and a singularity must occur for this surface. (To continue

Figure 4. A singularity occurs

the flow past such a singularity see [4] and [5], or [6]–[9].)
If the initial surface is convex, the situation is better: Huisken proved 1984, that

the solution stays convex and shrinks in finite time to a round point. This means, that
if one rescales the solution suitably (e.g., by keeping the area constant), it converges
in finite time uniformly to a round sphere.

In R2, the situation is even better: if one starts the (mean) curvature flow (also
called curve shortening flow in this case) with an embedded closed curve, the solution
stays embedded and converges in finite time to a round point. This is a result of
Grayson (see [11]).

Nonetheless, the curve shortening flow can develop singularities also in the plane,
if one starts with a curve that is not initially embedded. The example in Figure 5 is
due to Angenent (see [2]): here, the inner loop suffers from its higher curvature and
therefore shrinks faster than the outer loop. A singularity forms in finite time. By
rescaling the solution suitably, e.g., by keeping the maximal curvature constant, the
rescaled solution converges to a very particular limit, namely the curve x = − log cos y

(see Figure 6): Angenent has shown, that the blow-up of every so called type II
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