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CURVATURE METRICS ON BLOW UPS

by

Claudio Arezzo & Frank Pacard

Abstract. — We consider when the blow up at a finite number of points of a compact
Kähler constant scalar curvature manifold has constant scalar curvature. The par-
ticular case when the manifold does not admit any Hamiltonian holomorphic vector
fields is discussed.

Résumé (Sur les classes de Kähler des métriques à courbure scalaire constante définies sur des
éclatements)

Nous considérons quand l’éclatement en un nombre fini de points d’une variété
compacte Kählérienne à courbure scalaire constante a une courbure scalaire con-
stante. Le cas particulier où la variété n’admet aucun champ de vecteur holomorphe
Hamiltonien est considéré.

1. Introduction

In this short paper we address the following question:

Problem 1.1. — Given a compact constant scalar curvature Kähler manifold
(M,J, g, ω), of complex dimension m := dimC M , and having defined

4 := {(p1, . . . , pn) ∈Mn : ∃ a 6= b pa = pb},

characterize the set PW = {(p1, . . . , pn, α1, . . . , αn)} ⊂ (Mn\4)×(0,+∞)n for which
M̃ = Blp1,...,pn

M , the blow up of M at p1, . . . , pn has a constant scalar curvature
Kähler metric (cscK from now on) in the Kähler class

π∗[ω]− (α1 PD[E1] + · · ·+ αn PD[En]),

where the PD[Ej ] are the Poincaré duals of the (2m − 2)-homology classes of the
exceptional divisors of the blow up at pj.
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This general problem is too complicated and its solution is likely to pass through
the solution of well known conjectures relating the existence of cscK metrics with the
K-stability of the polarized manifold.

Yet, more specific questions are treatable and could give light also on these am-
bitious programs. The first natural narrowing of Problem 1.1 is to require that not
just one Kähler class has a cscK representative, but that this is the case for a whole
segment in the Kähler cone of M̃ touching the boundary at a point of the form π∗[ω],
where ω is (necessarily) a cscK form onM . Analytically this amounts to the following:

Problem 1.2. — Given a compact Kähler constant scalar curvature manifold
(M,J, g, ω) characterize the set APW = {(p1, . . . , pn, a1, . . . , an)} ⊂ (Mn \ 4) ×
(0,+∞)n such that M̃ = Blp1,...,pn

M has a constant scalar curvature Kähler metric
in the class

π∗[ω]− ε2 (a1 PD[E1] + · · ·+ an PD[En]),

for all ε sufficiently small. Here APW refers to "asymptotic points and weights",
namely points and weights in this singular perturbation setting.

Hence we can consider (α1, . . . , αn) as an asymptotic direction in the Kähler cone
for which canonical representative can be found. It is immediate to extract from [2]
the following :

Theorem 1.1. — Assume that (M,J, g, ω) is a constant scalar curvature compact
Kähler manifold without any nontrivial hamiltonian holomorphic vector field. Then
APW = (Mn \∆)× (0,+∞)n.

The presence of hamiltonian holomorphic vector fields greatly enhances the diffi-
culty and the interest of the problem. In [1] the authors have attacked this problem
and found an interplay between its solution and the behavior of the hamiltonian
holomorphic vector fields at the pj that we briefly recall.

First recall that the Matsushima-Lichnerowicz Theorem asserts that the space of
hamiltonian holomorphic vector fields on (M,J, ω) is also the complexification of the
real vector space of holomorphic vector fields Ξ which can be written as

Ξ = X − i J X,
where X is a Killing vector field which vanish somewhere on M . Let us denote by h,
the space of hamiltonian holomorphic vector field and by

ξω : M 7−→ h∗

the moment map which is defined by requiring that if Ξ ∈ h, the function ζω := 〈ξω,Ξ〉
is a (complex valued) Hamiltonian for the vector field Ξ, namely the unique solution
of

−∂̄ζω =
1

2
ω(Ξ,−),

which is normalized by ∫
M

ζω dvolg = 0.
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With these notations, the result we have obtained in [1] reads:

Theorem 1.2. — Assume that (M,J, g, ω) is a constant scalar curvature compact Käh-
ler manifold and that p1, . . . , pn ∈M and a1, . . . , an > 0 are chosen so that:

(i) ξω(p1), . . . , ξω(pn) span h∗

(ii)
∑n
j=1 a

m−1
j ξω(pj) = 0 ∈ h∗ .

Then, there exist ε0 > 0 such that, for all ε ∈ (0, ε0), there exists on M̃ =

Blp1,...,pn
M , a constant scalar curvature Kähler metric gε associated to the Käh-

ler form
ωε ∈ π∗ [ω]− ε2 (a1,ε PD[E1] + · · ·+ an,ε PD[En]),

where

(1) |aj,ε − aj | ≤ c ε
2

2m+1 .

Finally, the sequence of metrics (gε)ε converges to g in C∞(M \ {p1, . . . , pn}).

Therefore, in the presence of nontrivial hamiltonian holomorphic vector fields, the
number of points which can be blown up, their position, as well as the possible Kähler
classes on the blown up manifold have to satisfy some constraints.

It is not hard to see from the proof in [1] that the mapping

(a1, . . . , an) 7−→ (a1,ε, . . . , an,ε)

is continuous. Indeed, this follows from the construction itself which only uses fixed
point theorems for contraction mappings and hence the metric we obtain depends
smoothly on the parameters of the construction.

Theorem 1.2 has two major drawbacks : First, we lose control on the Kähler classes
on M̃ for which constant scalar curvature Kähler metrics can be constructed, second
there are severe restrictions on the set of points and asymptotic directions.

The key idea to fill these gaps is to note that the construction of [1] is in fact a
construction of the Riemannian metric gε and this is reflected by the fact that the
sequence of metrics constructed converges to the initial metric g and also in the fact
that condition (ii) really depends on the choice of the metric g.

Now, on the one hand, the origin of (ii) stems from the existence of hamiltonian
holomorphic vector fields on (M,J) and in fact (ii) imposes on the choice of the
asymptotic directions (a1, . . . , an) as many constraints as the dimension of h.

On the other hand, the existence of hamiltonian holomorphic vector fields is also
related to the non-uniqueness of the constant scalar curvature Kähler metric on M .
More precisely, h is the Lie algebra of the group of automorphisms of (M,J, g, ω) and
as such also parameterizes near g the space of constant scalar curvature Kähler metrics
in a given Kähler class [ω] and for a given scalar curvature. Observe that this space
has dimension equal to dim h. Therefore, we can Apply the result of Theorem 1.2
not only to the metric g itself but also to the pull back of g by any biholomorphic
transformation.
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Since condition (ii) depends on the choice of the metric, if we are only interested in
the Kähler classes on the blown up manifold, we get more flexibility in the choice of
the asymptotic parameters (observe that the dimension of the space of constant scalar
curvature Kähler metrics near g (with fixed scalar curvature) is precisely equal to the
number of constraints on the choice of the asymptotic parameters). This observation
allows us to complement the result of Theorem 1.2 and get the:

Theorem 1.3. — Assume that (M,J, g, ω) is a constant scalar curvature compact Käh-
ler manifold and that p1, . . . , pn ∈M and a1, . . . , an > 0 are chosen so that:

(i) ξω(p1), . . . , ξω(pn) span h∗ (genericity condition);
(ii)

∑n
j=1 a

m−1
j ξω(pj) = 0 ∈ h∗ (balancing condition);

(iii) no element of h vanishes at every point p1, . . . , pn (general position condition).

Then (p1, . . . , pn, a1, . . . , an) ∈ APW.

Therefore, we can indeed prescribe the exact value of the asymptotic direction in
which the Kähler classes in perturbed at the expense of imposing that no hamiltonian
holomorphic vector field vanishes at every point we blow up.

The genericity condition is purely technical and it does not seem to hide any deep
geometric nature. Indeed, as observed in [1]:

Lemma 1.1. — With the above notations, assume that n ≥ dim h. Then, the set of
points (p1, . . . , pn) ∈Mn \ 4 satisfying the genericity condition is open and dense.

The balancing condition is certainly the heart of the problem, encoding the relevant
stability property of M̃ . For example when all the aj are rationals, the balancing
condition is easily translated in the Chow polystability of the cycle

∑
j a

m−1
j pj with

respect to the action of the automorphism group of M .
In a remarkable recent paper Stoppa [13] has proved, among other things, that

it if the cycle
∑
j a

m−1
j pj is Chow unstable, then (p1, . . . , pn, a1, . . . , an) does not

lie in APW. With a beautifully careful algebraic analysis he has in fact related a
destabilizing configuration for the points to a destabilizing configuration of the blown
up manifold giving a quantitative measure of the reciprocal unstabilities.

Going back to our problem, we first observe that the combination of the three
above condition still leaves flexibility in the choices:

Theorem 1.4. — With the above notations, assume that n ≥ dim h+ 1 then, the set of
points ((p1, . . . , pn), (a1, . . . , an)) ∈ (Mn \ 4) × (0,∞)n such that condition (i), (ii)
and (iii) are fulfilled is open in (Mn \ 4)× (0,∞)n.

Openness in the choice of the points was already contained in [1]. What we will
prove in this short pPer is the openness in the choice of the asymptotic directions.
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