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Abstract. — In this article we describe some second-order PDEs from conformal
geometry, and the connections between the ellipticity of these equations and various
notions of curvature pinching. Particular study is made of the PDEs which result
from prescribing symmetric functions of the eigenvalues of the Schouten tensor.

Résumé (Les équations non-linéaires, ellpiticité et le pincement de la courbure). — Dans cet
article, nous décrivons quelques EDP du second ordre issus de la géométrie conforme,
et les liens entre l’ellipticité de ces équations et les diverses notions de courbure
pincée. Nous étudions en particulier l’EDP qui résulte en prescrivant les fonctions
symétriques des valeurs propres du tenseur de Schouten.

1. Introduction

In this article I want to describe some second-order PDEs from conformal geometry,
and the interesting connection between the ellipticity of these equations and various
notions of curvature pinching. The reader should be forewarned that I am selectively
choosing results in a broad and rapidly advancing field and make no pretense to
providing a general survey, which can be found, for example, in [45]. Rather, I wish
to emphasize those results in field that exploit the fully nonlinear structure of the
equations for geometric ends.

To begin, suppose (Mn, g) is a compact Riemannian manifold of dimension n ≥
3 without boundary. Let Riem = Riem(g), Ric = Ric(g), and R = R(g) denote
respectively the Riemannian curvature tensor, the Ricci curvature tensor, and the
scalar curvature of g. From the perspective of conformal geometry the Ricci tensor
and scalar curvature are not the most natural components of the decomposition of
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Riem. To see why, letW = W (g) denote the Weyl curvature tensor, and let A = A(g)

denote the Schouten tensor, defined by

A =
1

(n− 2)

Å
Ric− 1

2(n− 1)
Rg

ã
.(1.1)

Then one can decompose the curvature tensor as

Riem = W +A ∧ g,(1.2)

where ∧ is the exterior product, extended in the natural way to the bundle of sym-
metric (0, 2)-tensors. It is well known that the Weyl tensor if conformally invariant:
e.g., if ĝ = e−2ug is a conformal metric, then

W (ĝ) = e−2uW (g).(1.3)

From this fact and (1.2) we conclude that under a conformal change of metric the
behavior of the curvature tensor is completely determined by the behavior of the the
Schouten tensor.

What is the behavior of the Schouten tensor? If ĝ = e−2ug, then

A(ĝ) = A(g) +∇2u+ du⊗ du− 1

2
|du|2g,(1.4)

where all covariant derivatives are with taken with respect to the background metric
g. Incidentally, this formula also explains why we write our conformal factors as e−2u,
since then the conformal Schouten tensor is of the form

A(ĝ) = ∇2u+ · · · ,(1.5)

where · · · denotes lower order (in derivatives) terms. Roughly speaking, we are inter-
ested in the PDEs which result from prescribing symmetric functions of the eigenvalues
of the Schouten tensor. The first such equations were introduced in the thesis of Jeff
Viaclovsky [42], where he considered the elementary symmetric polynomials.

To make this more precise, for 1 ≤ k ≤ n, let σk : Rn → R denote the elementary
symmetric polynomial of degree k:

σk(λ1, . . . , λn) =
∑

i1<···ik

λi1 · · ·λik .(1.6)

Let f ∈ C∞ be a given smooth function; we would like to find a conformal metric
ĝ = e−2ug with

σk(A(ĝ)) = ψ(x),(1.7)

where σk(A(ĝ)) denotes σk applied to the eigenvalues of A(ĝ). By (1.4), equation
(1.7) is equivalent to the following PDE in the conformal factor u:

σk

Å
A+∇2u+ du⊗ du− 1

2
|du|2g

ã
= ψ(x)e−2ku.(1.8)

The exponential weight on the right-hand side results from the convention that the
eigenvalues of the bilinear form on the left-hand side are computed with respect to
the background metric g.
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When k = 1, σ1(A) is the trace of the Schouten tensor, which by (1.1) is just a
multiple of the scalar curvature:

σ1(A) =
1

2(n− 1)
R.(1.9)

Therefore, (1.7) is the equation of prescribed scalar curvature. In this case one typi-
cally writes ĝ = v4/(n−2)g and in place of (1.8) we have

−4(n− 1)

(n− 2)
∆v +R(g)v = R(ĝ)v

(n+2)
(n−2) .(1.10)

Unlike the scalar curvature equation, (1.8) is not in general variational; or at least
not in an obvious way. Let

[g] = {ĝ = e−2ug
∣∣ u ∈ C∞}(1.11)

denote the conformal class of g, and

[g]1 = {ĝ ∈ [g]
∣∣ Vol(ĝ) = 1}(1.12)

denote conformal metrics of unit volume. Consider the functionals F2 : [g]1 → R
defined by

Fk[g] =

∫
σk(A) dV.(1.13)

Up to a constant F1 is just the total scalar curvature; a metric g is a critical point of

F1

∣∣
[g]1

if and only if g has constant curvature. There is of course an analogous variational
formulation of conformal metrics with variable curvature. For other values of k,
however, the picture is more complicated:

Theorem 1.1. — (See [42]) Suppose k 6= n/2.
(i) If k = 1 or 2, then a metric g is critical for Fk |[g]1 if and only if σk(A(g)) =

const.

(ii) Suppose k ≥ 3 and (Mn, g) is locally conformally flat. Then g is critical for
Fk |[g]1 if and only if σk(A(g)) = const.

Before moving on the some more technical aspects required for the analysis of (1.8),
we make some comments.

Remark 1. — The condition k 6= n/2 is due to the conformal invariance of Fn/2 in
certain cases. For example, when k = 2 and n = 4, by the Chern-Gauss-Bonnet
theorem we have

2π2χ(M4) =
1

4

∫
‖W‖2 dV +

∫
σ2(A) dV.(1.14)

The pointwise formula (1.3) implies that the L2-integral of the Weyl curvature is
conformally invariant, and it follows that the integral of F2 is conformally invariant
in dimension 4.
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When n = 2k ≥ 6 and (Mn, g) is locally conformally flat, then

χ(Mn) = cn

∫
σn/2(A) dV,

so that Fn/2 is conformally invariant; see [42].

Remark 2. — Viaclovsky’s Theorem shows the distinctiveness of the functionals F1

and F2. This extends beyond their variational properties within a fixed conformal
class; see [23].

Remark 3. — There are other equations involving symmetric functions of the eigen-
values of A which are the Euler equations of variational integrals. In [11], Ge-Lin-
Wang studied the functional

F2,1[g] =

∫
σ2(A) dVÅ∫

σ1(A) dV

ãn−4
n−2

.(1.15)

In n 6= 4, then critical points of F2,1 satisfy

σ2(A)

σ1(A)
= const.(1.16)

Remark 4. — Expanding on the previous example, in general one can consider equa-
tions of the form

F [A(ĝ)] = ψ(x),(1.17)

where F : Rn → R is a symmetric function of n variables satisfying certain structural
conditions. We will give some specific examples below.

In addition to variational properties, a crucial difference between the scalar curva-
ture equation and equation (1.7) is the fact that the latter is in general not elliptic.
Therefore, in the next section we will provide a characterization of ellipticity.

2. Ellipticity

Consider a general second order differential equation defined on a domain Ω ⊂ Rn
which we write as

F [x, u,∇u,∇2u] = 0.(2.1)

Here, F : U ⊂ R × R × Rn × Rn×n → R. To simplify the exposition, let us suppose
that F : U ⊂ R× Rn×n → R and the corresponding equation is of the form

F [x,∇2u] = 0.(2.2)

SÉMINAIRES & CONGRÈS 22


