
S é m i n a i re s
 &   C o n g rè s

C O L L E C T I O N   S M F

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Numéro 23

ARITHMETIC AND GALOIS THEORY
OF DIFFERENTIAL EQUATIONS

Lucia Di Vizio, Tanguy Rivoal, eds.

UNIPOTENT RADICALS OF TANNAKIAN
GALOIS GROUPS IN POSITIVE

CHARACTERISTIC

Charlotte Hardouin



Séminaires & Congrès
23, 2011, p. 283–299

UNIPOTENT RADICALS OF TANNAKIAN GALOIS GROUPS
IN POSITIVE CHARACTERISTIC

by

Charlotte Hardouin

Abstract. — Let T be a Tannakian category over a field C of strictly positive char-
acteristic. We show in this note how one can characterize the unipotent radical of
the Tannakian Galois group of an object U , extension of the unit object 1 by a com-
pletely reducible object Y in terms of the group Ext1(1,Y) of isomorphism classes of
extension of 1 by Y. We deduce from our Theorem that, under certain hypothesis,
the Tannakian Galois group of a direct sum of extensions is entirely determined by
the relations of linear dependence satisfied by these extensions in Ext1(1,Y). This
corollary reduces the computation of an algebraic group to a question of linear alge-
bra. As an application, we show how it gives an alternative proof of the algebraic
independence of the Carlitz logarithms of M. Papanikolas ([14]).

Résumé (Radicaux unipotents de groupes de Galois tannakiens en caractÃl’ristique positive)
Soit T une catégorie tannakienne sur un corps C de caractéristique strictement

positive. Nous montrons dans cette note comment on peut ramener l’étude du radical
unipotent d’un groupe de Galois tannakien d’un objet U , extension de l’objet trivial
1 par un objet Y complétement réductible, à celle du groupe Ext1(1,Y) des classes
d’isomorphismes d’extensions de 1 par Y. Nous déduisons de nôtre théorème que,
sous certaines hypothèses, le groupe de Galois tannakien d’une somme directe d’ex-
tensions est entièrement déterminé par les relations de dépendance linéaire satisfaites
par ces extensions dans Ext1(1,Y). Ce corollaire ramène le calcul des relations al-
gébriques définissant le groupe à une question d’algébre linéaire. Comme application,
nous donnons une preuve alternative de l’indépendance algèbrique des logarithmes
de Carlitz de M. Papanikolas ([14]).

Introduction

Computation of Tannakian Galois groups. — The theory of Tannakian categories
gives a precise answer to the question: “when is a category equivalent to the category
RepG of finite dimensional representations of an affine group scheme?” By definition,
a Tannakian category T over a field C is a rigid abelian tensor category (see [7, §2.8]).
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It is said to be neutral if there exists a functor ω : T → V ectC from T into the category
of finite dimensional C-vector spaces, called “fiber functor”, that is C-linear, faithful,
exact and tensor compatible (see [7, §1.9]). For instance, the category of differential
modules over the differential field (C(x), ∂ := d

dx ) is a Tannakian category (see [18,
§2.2]). The choice of a basis of a differential moduleM yields to a differential system
∂Y = AY with A ∈ Glν(C(x)). Then, a basis of solutions of this last system provides
a fiber functor for the full Tannakian sub-category generated by M. The category
of differential modules over a differential field of characteristic zero, the category
of iterative differential modules over a field of positive characteristic (see [13]), the
category of q-difference modules (see [19]), the category of Frobenius modules (see
[12]), which includes isocrystals in the p-adic case and t-motives (see [14]) in the t-
adic case are just other examples of Tannakian categories. The fundamental theorem
for Tannakian categories is the following

Theorem 1 (see Theorem 1.12 of [7] ). — Let T be a neutral Tannakian category over a
field C together with a fiber functor ω : T → V ectC . Then, the functor Aut⊗(ω) of
tensor compatible automorphisms of ω is representable by an affine group scheme G
defined over C and ω induces an equivalence of categories between T and the category
RepG of finite dimensional representations of G.

Then, the Galois group of an object M of a Tannakian category is defined as
follows.

Definition 1 (see Theorem 3.2.1.1 of [3]). — Let (T , ω) be a neutral Tannakian category
defined over a field C. We denote by 〈M〉⊗ the full Tannakian sub-category generated
byM in T . Then,

– there exists an affine group scheme GM defined over C, together with a closed
immersion ι from GM into Gl(ω(M)), such that ω|M : 〈M〉⊗ → V ectC induces
a ⊗-tensor equivalence of categories between 〈M〉⊗ and the category RepGM ;

– the image of ι is the closed sub-group of Gl(ω(M)) which stabilizes all the sub-
objects N contained in any finite sum

⊕
i,j(M⊗i⊗(M∗)⊗j), whereM∗ denotes

the dual ofM.

We call GM the Galois group ofM.

For a differential module M over C(x), the linear algebraic group GM is defined
over C and isomorphic to the differential Galois group attached to M by Picard-
Vessiot constructions (see [18, Definition 1.25]). Its dimension over C is equal to
the transcendence degree of the field generated over C(x) by a basis of solutions
of a differential system attached to M. In [3, Theorem 3.4.2.3], it is shown that,
for an object M in a neutral Tannakian category of either differential or difference
modules over C, there is a one to one correspondence between fiber functors over
〈M〉⊗, Picard-Vessiot extensions of M (roughly, C-algebras generated by a basis of
solution of M plus some minimality conditions) and GM-torsors. Specifically, this
implies that the algebraic relations between the solutions ofM are controlled by the
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Galois group ofM. The Tannakian categories are thus strongly related to questions
of functional transcendence and the computation of Tannakian Galois groups is a
powerful tool since it reduces these questions to the computation of a linear algebraic
group.

There exist some algorithms to compute Galois groups of Tannakian objects but
they are, most of the time, specific to the Tannakian category considered. For in-
stance, in [10], E. Hrushovski proves that one can compute the Galois group of a
linear differential equation over Q(x). In the first part of this note, we present some
theorems of computation for Tannakian Galois groups, which generalize those men-
tioned in [16]. Even if they requires some technical hypothesis, these theorems are
valid for any Tannakian category in positive characteristic and they may thus ap-
ply, for instance, as well for iterative differential equations as for Frobenius difference
equations.

We detail below the results of the first section of this note. Let C be a field and
let (T , ω) be a neutral Tannakian category over C. Let 1 be the unit object for the
tensor product. Let Y be a completely reducible object of T , i.e. Y is a direct sum
of finitely many irreducible objects. We say that U , an object of T , is an extension
of 1 by Y if there exists an exact sequence in T such that

0→ Y → U → 1→ 0.

To consider extensions of 1 by Y is a way to build “logarithms of the solutions” of Y.
For instance, if Y is a differential module over (C(x), ddx ) associated to the differential
system d

dxY (x) = A(x)Y (x) with A(x) ∈ Glν(C(x)), then an extension of 1 by Y
corresponds to a differential system of the form d

dxZ(x) = A(x)Z(x) + B(x) with
B(x) ∈ (C(x))ν .

Using Levi decomposition, we see that the Galois group GY of an extension U
of 1 by Y a completely reducible object, may be written as the semi-direct product
GU = Ru(GU ) oGY where Ru(GU ) stands for the unipotent radical of GU . Then, if
we assume that GY is given, the computation of GU is reduced to the computation
of the unipotent radical of GU . If the characteristic of C is equal to zero, it is proved
in [9, Theorem 2.1] that the unipotent radical of GU is isomorphic to a vectorial sub-
group of the fiber ω(Y), entirely determined by the structure of Ext1(1,Y), the group
of isomorphism classes of extensions of 1 by Y in T. The proof extends and follows
closely the kummerian arguments of [5] and [4]. If the characteristic of C is strictly
positive, one has to be more careful ; first of all, it may happen that the Galois groups
are not reduced and, secondly, the image of a vectorial group by a group morphism is
not necessarily a vectorial group. Then, if Gm denotes the multiplicative group over
C, we have

Theorem 2. — Let Y be an object of T, and let U be an extension of 1 by Y. Assume
that

1. every GY -module is completely reducible,
2. the center of GY contains Gm,
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3. the action of Gm on ω(Y) is isotypic (1),
4. GU is reduced.

Then, there exists a smallest sub-object V of Y such that U/V is a trivial extension
of 1 by Y/V. The unipotent radical of the Galois group GU is then equal to ω(V).

First of all, we just want to emphasize the fact that every diagonal C-group scheme
satisfy the first hypothesis (see [11, p.35]). Secondly, the third hypothesis may be
removed if one thinks in terms of weights of the characters of Gm acting on each
isotypical components of ω(Y ). But, for simplicity of exposition, we assume that the
action of Gm is isotypic, i.e. involves one single character. As a corollary of Theorem
2, we show

Corollary 1. — Let Y be an object of T. Let ∆ be the ring End(Y), and let E1, ..., En
be extensions of 1 by Y. Assume that

1. every GY -module is completely reducible,
2. the center of GY contains Gm,
3. the action of Gm on ω(Y) is isotypic,
4. GE1 , ..., GEn are reduced.

Then, if E1, ..., En are ∆-linearly independent in Ext1(1,Y), the unipotent radical of
GE1⊕...⊕En is isomorphic to ω(Y)n.

The meaning of this corollary is the following. Algebraic relations between the
extensions occur if and only if the group GE1⊕...⊕En is not as big as possible, i.e. , if
and only if its unipotent radical is strictly contained in ω(Y)n. Corollary 1 then states
that algebraic relations are exactly given by the relations of linear dependence. As
for Theorem 2, this corollary holds in characteristic zero (see [9, Cor. 2.2]). Even if,
in full generality, the criteria of linear dependency of the extensions shall seem rather
complicated, it reduces most of the time, to a question of existence of a rational
solution of a given equation.

An application to the transcendency of periods of Drinfeld module. — In the second
section, we show how the computation theorems of the first section may apply to the
Tannakian category of t-motives defined by M. Papanikolas in [14] and thus to the
study of the transcendence properties of some periods of Drinfeld modules.

Let Fq be the field of q elements, where q is a power of a prime p. Let k := Fq(θ),
where θ is transcendental over Fq. Define a valuation |.|∞ at the infinite place of
k such that |θ|∞ = q. Let k∞ := Fq((1/θ)) be the ∞-adic completion of k, let k∞
be an algebraic closure of k∞, let K be the ∞-adic completion of k∞, and let k be
the algebraic closure of k in K. One call “numbers ” the elements of K. A number
which is not in k is a transcendent number. Let K[τ ] be the twisted polynomial
ring in τ over K subject to the relation τc = cqτ for all c ∈ K. Now, let t be an

(1) We recall that the action of a group G on a module V is isotypic if the module V is the direct
sum of irreducible isomorphic G-modules.
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