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Abstract. — This is a short introduction to the phenomena of deformation and conflu-
ence of linear differential/difference equations, in the ultrametric context, following
the papers [3], [24], [23]. It is the transcription of a talk given at the thematic
school on Théories galoisiennes et arithmétiques des équations différentielles, 21-25
september 2009, at the C.I.R.M. of Luminy (France). These notes are intended to
be comprehensible to non specialists, and especially to the undergraduate students
of that school.

Résumé (Introduction de base à la déformation et confluence des équations différentielles ultra-
métriques et aux q-différences)

Celle ci est une courte introduction aux phénomènes de la déformation et de la con-
fluence des équations différentielles et aux différences, dans le cadre ultramétrique,
suivant les papiers [3], [24], [23]. C’est la transcription d’un exposé donné lors de
l’école thématique sur Théories galoisiennes et arithmétiques des équations différen-
tielles, 21-25 septembre 2009, qui a eu lieu au C.I.R.M., Luminy (France). Cet écrit
est supposé être compréhensible aux non-spécialistes, spécialement aux étudiants qui
ont participé à ce rencontre.

Introduction

The aim of this paper is to give a very simple and quick introduction to the phe-
nomena of deformation and confluence in the ultrametric context. The aim is to
explain the contents of the papers [3], [24], and [23]. These notes are not intended
to be a general survey on the topic of deformation and confluence.
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The notion of stratification (cf. section 4) is essentially due to A.Grothendieck,
P.Berthelot, L.Illusie, N.M.Katz, ... (1). They were mainly interested in finding a
substitute of the notion of linear differential equation in characteristic p > 0, in order
to obtain a good category of coefficients for a p-adic cohomological theory. Indeed, in
characteristic 0, stratifications form a category which is equivalent to that of (linear)
differential equations (cf. Theorem 4.1). In down to earth terms, the notion of
stratification is nothing but the data of the generic Taylor solution of a differential
equation (cf. section 4).

In these notes we are going to expose, in the ultrametric context, the definition of
a functor called σ-deformation. Roughly speaking the functor is obtained as follows.
We consider differential modules defined over a 1-dimensional affinoid X (see section
1). We consider a certain type of differential modules (M,∇) over X, whose Taylor
solutions have “ large convergence”. We then prove that for all automorphism σ of X,
sufficiently close to the identity, there exists a canonical semi-linear action of σ on the
differential module M, making it a so called σ-module (cf. section 3). We denote by
σM : M

∼→ M this operator. The main property of this action of σ is the following: If
(M, σM) is intended as a σ-difference equation overX (see section 3), then its solutions
on a disk coincide with the Taylor solutions of M intended as a differential equation.
The operator σM is canonical in the sense that it commutes with the morphisms
between differential modules. We hence have a functor (which is the identity on the
morphisms) associating to the differential module (M,∇) the pair (M, σM). This
functor is called σ-deformation. The main point of this construction is the existence
of σM. We deduce it by considering a certain pull back of the stratification attached
to (M,∇). In this sense we define the σ-deformation functor as the composite of the
equivalence between differential equations and stratifications with a certain pull-back
functor defined on the category of stratification with values on σ-modules (cf. section
6.2.1).

Structure of the paper. — In the first four sections we start by introducing differen-
tial equations, σ-modules, (elementary) stratifications, and the equivalence between
differential equation and stratification. Section 5 concerns Berkovich spaces. This
section is expository, and is useful in order to understand the behavior of the ra-
dius of convergence of the Taylor solutions of a differential equation, and hence the
(ultrametric) convergence locus of a stratification (cf. section 5.3). Section 5 is not
essential for the basic understanding of the rest of the paper. In sections 6 and 7 we
introduce the σ-deformation and σ-confluence functors. We recall very roughly the
method employed by Y.André and L.Di Vizio (cf. [3]) to obtain the σq-confluence in
the case of p-adic q-differences equations over the so called Robba ring. In section

(1) The notion of stratification as intended in these notes certainly date back to before, as actually
Grothendieck affirms (without giving any reference, cf. [15]). The terminology stratification is not
standard, and our notion slightly differs from that of Grothendieck (cf.[6]).
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6.2 we give an alternative construction of the σ-deformation functor as a certain pull-
back of the stratification, and we compare this definition with that of Y.André and
L.Di Vizio. As a main goal we obtain the σ-deformation functor for a more general
class of automorphisms σ, and for more general classes of domains and of equations
(cf. section 6.2.3). Moreover we obtain the analytical dependence of the operators
on a parameter that can run on an ultrametric analytic variety (cf. section 6.3). In
the context of q-difference equations the analytical dependence of the operator σq
(acting on the module) with respect to q permits to reproduce the analogous of the
q-confluence functor for the roots of unity (cf. section 7.4). Indeed we heuristically
look to the category of differential equations as a category “over q = 1”, and that of
q-difference equations as a category “over q”, where q is different to a root of unity.
The classical confluence functor, as exposed in this paper, associates to a q-difference
equation a differential equation having the same Taylor solutions at (one and hence at)
all points. This is done using the analytical dependence of σq (acting on the module)
with respect to q (cf. section 7.3.2). We generalize this construction “over q = ξpn"
where ξpn is a pn-th root of unity instead of “over q = 1”, by replacing the category
of differential equations with a category of mixed objects formed by a q-difference
module (q equal to a root of unity) together with a (compatible) differential equation.
The last section 8 takes a quick look at the complex analogous. No material of this
paper is new with the exception of this last section which is intended to be a very
quick introduction to a forthcoming paper.

Acknowlegements. — The author would like to express his gratitude to Claudia Schoe-
mann for the quick correction of the language of the paper. He apologizes for any
remaining inaccuracies that are entirely of his fault.

1. Affinoids

Let K be a field, together with an ultrametric absolute value |.| for which K is
complete.(2) The basic bricks of the ultrametric geometry are the so calledK-affinoids.
In this paper we consider those of them that are (one dimensional, connected) affinoid
sub-spaces of the affine line, defined by a family of conditions X := {x | |x − c0| ≤
R0, |x − ci| ≥ Ri, ∀ i = 1, . . . , n}, where 0 < R1, . . . , Rn ≤ R0 are arbitrary real
numbers, and c0, . . . , cn ∈ K. We often indicate X as

(1.1) X := D+(c0, R0)− ∪ni=1D−(ci, Ri) ,

where the symbol D+(c0, R0) = {x | |x − c0| ≤ R0} means a closed disk, and
D−(ci, Ri) = {x | |x − ci| < Ri} an open disk. The assumption c0, . . . , cn ∈ K

is due to some technical reasons. If (A, |.|)/(K, |.|) is a complete valued K-algebra

(2) Notice that the absolute value is possibly trivial. All the statements of this paper work as well
over an affinoid over a field K together with the trivial absolute value. The results of section 6.1,
and also the part of the theory concerning differential/σ-difference equations over the Robba ring
need the absolute value to be non-trivial, because one applies the theory of Christol-Mebkhout.
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with respect to a norm extending the absolute value of K, then we denote by X(A)

the set of elements in A satisfying the conditions of X. As an example if R0 = 1,
R1 = · · · = Rn = 0, and c0 = · · · = cn = 0, then for all complete valued field
extension Ω/K one has X(Ω) = OΩ, where OΩ is the ring of integers of Ω. In this
sense, analogously to the theory of schemes, X is a functor of the category of complete
normed K-algebras with values in the category of sets. By abuse of language we will
write x ∈ X to indicate “x ∈ X(Ω) for an unspecified complete valued field extension
Ω/K”.

Let now K(T ) be the fraction field of the ring K[T ] of polynomials with coefficients
in K. The sub-ring Hrat

K (X) of K(T ), formed by rational functions without poles on
X, has a norm ‖.‖X defined as

(1.2) ‖P (T )/Q(T )‖X := supx∈X |P (x)/Q(x)| .

Remark 1.1. — Here x ∈ X means that x runs into the set of Ω-rational points of
X, for an unspecified field Ω (large enough) equipped with an absolute value |.|Ω ex-
tending that of K. The correct way to express the above definition would be then
‖P (T )/Q(T )‖X := supΩ/Ksupx∈X(Ω)|f(x)|, where X(Ω) means the “Ω-rational points
of X”. This formulation is possible thanks to the fact that there exists a specific Ω̃/K,
together with n + 1 points tc0,R0

, . . . , tcn,Rn ∈ X(Ω̃), such that for each other Ω/K

one has

(1.3) sup
x∈X(Ω)

∣∣∣P (x)

Q(x)

∣∣∣
Ω
≤ max

i=0,...,n

∣∣∣P (tci,Ri)

Q(tci,Ri)

∣∣∣
Ω̃

= sup
x∈X(Ω̃)

∣∣∣P (x)

Q(x)

∣∣∣
Ω̃
.

The family {tc0,R0
, . . . , tcn,Rn} is known as the (Dwork’s generic points attached to

the) Shilow boundary of X (cf. section 5.1). It is hence enough to consider a single
field Ω̃. But we will often drop the Ω in the notations, as in the equation (1.2).
Analogously, when we say that the poles of P/Q (that are algebraic over K) are not
in X, we mean that there are no poles of P/Q neither in X(Kalg) nor in X(Ω) for
all Ω/K.

The completion (HK(X), ‖.‖X) of (Hrat
K (X), ‖.‖X) is called the ring of analytic

functions over X (often called Krasner’s analytic elements over X). If X is reduced
to a closed disc D+(c0, R0) the elements of HK(X) can be expressed as power series
f =

∑
n≥0 an(T − c0)n, with an ∈ K, converging on D+(c0, R0). In this case the

condition of convergence becomes limn→∞ |an|Rn0 = 0. Indeed, in the ultrametric
world, a series of elements in K converges if and only if its general term tends to 0.

More generally we define the ring of analytic functions over an open disk
D−(c,R), c ∈ K, R > 0 as the intersection AK(c,R) := ∩R′<RHK(D+(c,R′)). In
other words, the elements of AK(c,R) are power series

∑
n≥0 an(T − c)n verifying

limn |an|(R′)n = 0, for all R′ < R.
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