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Abstract. — We investigate the variation of the dimension of the Galois groups of
families of regular singular difference systems using analytic tools.

Résumé (Sur les groupes de Galois des familles de systèmes aux différences réguliers singuliers)
Nous étudions la variation de la dimension des groupes de Galois de familles de

systèmes aux différences singuliers réguliers au moyen d’outils analytiques.

1. Introduction-Organization

1.1. Introduction-Main results. — In the whole paper, x will denote a complex vari-
able and τ (resp. δ) will denote the difference operator acting on a function Y of
the complex variable x by τY (x) = Y (x−1) (resp. δY (x) = (x−1)(Y (x)−Y (x−1))).

Let us consider :

(Sh) : τY = AhY, Ah ∈ GLn(C(x, h))

a family of regular singular difference systems parameterized by h ∈ C \ Σ, Σ being
a finite subset of C, and let us denote by Gh the corresponding difference Galois
groups over C(x) (see [11]). Note that, in what follows, the algebraic dependence on
h is not essential and could have been replaced by analytic dependence on h on some
open subset of C.

In this paper we study the variation of dimGh (dimension of the complex linear
algebraic group Gh) with respect to h via an analytic approach.

Let us recall that (Sh) is Fuchsian if Ah(∞) = In, in which case we set
Ah;∞ = limx→∞(x − 1)(In − Ah(x)) ∈ Mn(C). It is moreover nonresonant if,
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for any pair (λ, µ) of distinct eigenvalues of Ah;∞, we have λ − µ 6∈ Z. The system
(Sh) is regular singular if there exists Fh ∈ GLn(C(x)) such that the system defined
by Fh[Ah] := (Fh(x− 1))−1Ah(x)Fh(x) is Fuchsian. For details about these classical
notions, we refer for instance to sections 1 to 4 of [14] and to chapter 9 of [11] and
to the references therein.

The regular singular difference systems are classified by their Birkhoff connection
matrices; this is in some sense similar to the classification of the regular singular
differential systems by means of their monodromy representations. For any h ∈ C\Σ,
we associate to (Sh) its Birkhoff connection matrix Ph ∈ GLn(C(x)) with x = e2πix

(see section 2). These give rise, for any h ∈ C\Σ, to a family of Galoisian morphisms
Λh(a, b) := (Ph(a))−1Ph(b) ∈ Gh parameterized by all (a, b) ∈ C2 such that Ph(a) and
Ph(b) are defined and invertible (this was pointed out for the first time by P. Etingof
in [7] in the case of regular q-difference systems and extended to regular singular
(q-)difference systems by M. Van der Put and M. Singer in [11]; for a different, more
“analytic”, point of view in the q-difference case we refer to the work of J. Sauloy in
[16]). These morphisms allow us to give a group-theoretic description of the Galois
groups Gh -see Theorem 3.2 in section 3.1- (the fact that they generate Zariski-dense
subgroups of the Galois groups is proved in [11]) and of their Lie algebras gh -see
Theorem 3.3 in section 3.2-.

Using the above-mentioned description of gh, we prove, in section 5, under the
hypotheses 1. to 3. stated in section 4.1, that :

Theorem. — Let κ = maxh∈C\Σ dim(Gh). Then Θ = {h ∈ C \ Σ | dim(Gh) = κ} is
an open subset of C \ Σ with discrete complement.

The following result is an immediate consequence of the above Theorem.

Corollary. — Suppose that there exists h ∈ C \ Σ such that Gh = GLn(C). Then for
any h ∈ C \ Σ but, maybe, a discrete subset, we have Gh = GLn(C).

Note that, replacing x by x
h , we can make the parameter h be also the step of the

equation. We leave the corresponding statements to the reader.

In a different context, the idea of an analytic approach for the study of the
variation of Galois groups appears in the work of J. Sauloy in [15, 16] and is an
essential motivation for A. Duval and the author’s papers [4, 5, 6, 14]; see also L.
Di Vizio and C. Zhang’s paper [2]. The reader will find more informations about the
algebraic meaning of the analytic theory of (q-)difference equations in the works of P.
Etingof [7], of J.-P. Ramis and J. Sauloy [12, 13], of J. Sauloy [16] and of M. Singer
and M. Van der Put [11]. Moreover, for problems and results related to the main
subject of the present paper, we refer the reader to Y. André’s paper [1]. Concerning
parameterized q-difference equations, we also refer to section 5 of C. Hardouin and
M. Singer’s paper [8].
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1.2. Organization. — In section 2 we recall useful properties of the regular singular
difference systems. In section 3 we give a group-theoretic description of the Galois
group of a given regular singular difference system and of its Lie algebra in terms
of a corresponding Birkhoff matrix. In section 4 we consider a family of regular
singular difference systems parameterized by h ∈ C \Σ and we study the dependence
of corresponding Birkhoff matrices on the parameter h. In section 5 we prove our
main theorem concerning the variation of the dimension of the Galois groups.

2. Regular singular systems : a reminder

2.1. Factorial series. — For the material presented in this section, we refer to section
2.1. of [3] and to [10].

A function a defined and holomorphic on some open subset of C containing some
half-plane Π+

M := {x ∈ C | <(x) > M} is expandable into a factorial series on Π+
M if

a admits an expansion, convergent on Π+
M , of the form :

+∞∑
s=0

asx
−[s]

where, for all s ∈ N,

x−[s] =
1

x(x+ 1) · · · (x+ s− 1)
.

When it exists, the factorial series expansion is unique. For later use, for all s ∈ N,
we also introduce the following notation :

x[s] = x(x+ 1) · · · (x+ s− 1).

The set of germs of holomorphic functions expandable into factorial series, de-
noted by Ofact, is by definition the direct limit of the sets of holomorphic functions
expandable into factorial series on the half plane Π+

M as M tends to +∞ (in what
follows, we will identify an element of the direct limit with one of its representatives).
It is a subring of the ring of germs of holomorphic functions at +∞ which is, by
definition, the direct limit of the rings of functions holomorphic on the half plane Π+

M

as M tends to +∞. In particular Ofact is an integral domain; its field of fractions
is denoted by Mfact. The intersection of Ofact and Mfact with M(C), the field
of meromorphic functions over C, are respectively denoted byOfact(C) andMfact(C).

Replacing x by −x, we get the notion of function expandable into retrofactorial
series. More explicitly, a function a holomorphic on some open subset of C containing
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some half-plane Π−M := {x ∈ C | <(x) < M} is expandable into a retrofactorial series
on Π−M if a admits an expansion, convergent on Π−M , of the form :

+∞∑
s=0

asx
−[−s]

where, for all s ∈ N,

x−[−s] =
1

x(x− 1) · · · (x− s+ 1)
.

When it exists, the retrofactorial series expansion is unique. For later use, for all
s ∈ N, we introduce the notation :

x[−s] = x(x− 1) · · · (x− s+ 1).

Moreover, we introduce the rings and fields of retrofactorial series Oretrofact,
Mretrofact, Oretrofact(C) and Mretrofact(C) defined similarly to Ofact, Mfact,
Ofact(C) andMfact(C) respectively.

For instance, any function defined and analytic in a neighborhood of ∞ ∈ P1
C is

expandable into factorial series and retrofactorial series.

We will denote by “Ofact the integral domain of formal factorial series and we
denote by M̂fact its field of fractions. The ring laws on “Ofact are given, for all
a(x) =

∑+∞
s=0 asx

−[s] ∈ “Ofact and b(x) =
∑+∞
s=0 bsx

−[s] ∈ “Ofact, by :

(1) (a+ b)(x) =
+∞∑
s=0

(as + bs)x
−[s]

and :

(2) (ab)(x) =
+∞∑
s=0

csx
−[s]

where :
c0 = a0b0 and, ∀s ∈ N∗, cs = a0bs + asb0 +

∑
(j,k,l)∈Js

c
(k)
j,l ajbl

with :

(3) ∀s ∈ N∗, Js = {(j, k, l) | j, l ≥ 1, k ≥ 0, j + k + l = s}
and :

(4) ∀(j, l) ∈ N∗ × N∗, ∀ k ∈ N, c
(k)
j,l =

(j + k − 1)!(l + k − 1)!

k!(j − 1)!(l − 1)!
.

As above, replacing x by −x, we get the integral domain of formal retrofactorial
series “Oretrofact; its field of fractions is denoted by M̂retrofact.

We can interpret any element A of Mn,m(Ofact) or Mn,m(“Ofact) as a series∑+∞
s=0 Asx

−[s] with coefficients in Mn,m(C). The above sum and product formulas
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