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Abstract. — The pseudogroup defined by B. Malgrange as a generalization of the
differential Galois group for nonlinear differential equation is presented. It is proved
that a equation integrable by quadratures has a solvable pseudgroup. From this a
new proof of a theorem of M. Singer is given.

Résumé (Une introduction au pseudo-groupe de Malgrange). — Nous donnons une introduc-
tion au pseudo-groupe défini par B. Malgrange généralisant aux équations différen-
tielles non linéaires le groupe de Galois différentiel. Nous prouvons que le pseudo-
groupe d’une équation intégrable par quadratures est résoluble et donnons une nou-
velle preuve d’un théorème de M. Singer.

1. Introduction

Between 1887 and 1904, E. Picard [18] and E. Vessiot [24] applied ideas from Galois
theory to differential equations. They succeded in getting a complete theory in case of
linear differential equations nowadays known as Picard-Vessiot Theory. Almost at the
same times J. Drach [7] and E. Vessiot [25] tried to extend this theory to a Differential
Galois Theory involving also nonlinear equations. Two reciprocal pseudogroups are
defined in [25, 26] by Vessiot, the specific one and the rationality one. One can find
this definition in the introduction (paragraph 3.) of [25]:

The specific group is the smallest rational group containing the equation as
infinitesimal subgroup.

No one follows this direction until two independent articles of H. Umemura [23] and
B. Malgrange [15]. H. Umemura infinitesimal Galois group of a differential equation
is the rationality pseudogroup of Vessiot defined rigorously by a Lie-Ritt functor. B.
Malgrange without knowledge of this late Vessiot’s article gives almost the same def-
inition: Galois pseudogroup of a vector field is the smallest algebraic pseudogroup
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containing this vector field as infinitesimal transformation so it is the specific pseu-
dogroup of Vessiot. Note that Lie-Ritt functors are very close to the way used by E.
Cartan to study Lie pseudogroups by means of what is now called Cartan connections
and are also very closed to ‘virtual groups’ defined by B. Malgrange in [16].

In the case of linear differential equations, these two groups appear as the Galois
group and the intrinsic group of Katz [2, 12] which are respectively the rationality
group and the specific group of Vessiot. In special nonlinear cases these two groups
appear to have been introduced by A. Pillay in [19] (Isomorphism between Galois
group and the kernel of the differential structure of the intrinsic group is given by
lemma 3.11). Analogues of these groups, pseudogroups and their isomorphisms are
discussed in [6] in more difficult context of linear q-difference equations.

The point of view presented here is the point of view of B. Malgrange with some
(very) small modifications. The end of the introduction contains a first look at the
linear case and the main tool used : theorem 1.3. We give the Galois/Umemura group
and the Malgrange pseudogroup in the linear case and compare them. Justifications
are given in the last section. It appears that this two objects are isomorphic but theirs
actions are reciprocal as claimed by Vessiot.

In the second section, algebraic singular groupoids and associated objects are de-
fined. Same examples are given after each definition to understand their relationship.

The third section ends with the definition of Malgrange pseudogroup and the pro-
jection theorem which is the only remainder of the Galois correspondence at this
stage.

In the last section we prove the nonlinear analog of a classical result due to Kolchin
in Picard-Vessiot Theory: the Galoisian object attached to an equation integrable
by quadratures is solvable. Here the Galoisian object is rather the Lie algebra of
Malgrange pseudogroup than the pseudogroup itself mainly because no good enough
definition of solvability for pseudogroup is known.

Before first examples let us recall the set theoretical definition of a pseudogroup.
A more algebraic definition will be given in the pseudogroup section.

Definition 1.1. — A pseudogroup of transformations of an analytic manifold V is a
set G of analytic maps between open sets of V , ϕ : s(ϕ)→ t(ϕ) such that

– the restriction of a transformation ϕ of G to a open subset of its domain s(ϕ)

is in G;
– if ψ ∈ G and ϕ ∈ G and t(ϕ) = s(ψ) then ψ ◦ ϕ is in G;
– if ϕ ∈ G then ϕ is invertible and ϕ◦−1, the inverse for the composition law, is

in G;
– if ϕ : s(ϕ)→ t(ϕ) is invertible and U ⊂ s(ϕ) is an open subset such that ϕ|U is

in G then ϕ is in G.
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1.1. Constant linear equations. — Let G an algebraic group of dimension d and X a
right invariant vector field on G. The description of the Malgrange pseudogroup of X
can be done as follow. Let Y1, . . . , Yd be a basis over C of left invariant vector fields
on G and H1, . . . ,Hn be generators of the field of rational first integrals of X. It is
an easy lemma to prove that left invariant vector fields are infinitesimal generators of
right translations, see [13]. Because of this, one gets [X,Yi] = 0 for all 1 ≤ i ≤ d and
by definition X ·Hj = 0 for all 1 ≤ j ≤ n. One gets (see definition 3.9)

Mal =
{
ϕ map between open sets s(ϕ) and t(ϕ) of G(1) ∣∣∣ϕ∗Hj = Hj , ϕ

∗Yi = Yi;∀(i, j), 1 ≤ j ≤ n, 1 ≤ i ≤ d
}

This pseudogroup is easy to define by means of subgroups of G. Let K ⊂ G the
smallest algebraic group such that X belongs to the right Lie algebra of K.

Lemma 1.2. — Mal is the pseudogroup of analytic localisations of elements of K
acting by left translation on G.

Proof. — For g ∈ G let rg (resp. lg) be the right (resp. left) translation by g on G.
Because left invariant vector fields are infinitesimal generators of right translations
one gets from invariance of Y ’s ϕ◦rg = rg ◦ϕ. Applying to the neutral element e one
gets ϕ(g) = ϕ(e)g thus ϕ is left translation on its domains. Let K be the subgroup
of all k = ϕ(e) for all ϕ ∈Mal. It is an algebraic subgroup defined by Hi(k) = Hi(e)

for all i.

If a smaller algebraic subgroup contains X in its Lie algebra then by Chevalley
theorem it has more rational invariants. But all rational invariants of such a group
are rational first integrals of X. From the beginning we get all such integrals so K is
the smallest algebraic group whose Lie algebra contains X.

Chevalley theorem can be replaced by the following more general theorem.

Theorem 1.3 (Gomez-Mont [9]). — Let F be an holomorphic foliation of a projective
variety V whose leaves are quasiprojective then there is a variety W and a rational
map H : V 99K W such that the closure of general fibers of H are closure of leaves of
F .

This theorem can replace Chevalley theorem by setting G = V , K is the smallest
algebraic subgroup whose Lie algebra contains X and F is the foliation by orbits of
left action of K.
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1.2. Linear equations. — Let us consider a linear differential equations on the trivial
vector bundle Cx × Cny

(E)
d

dx
(y1, . . . , yn) = (y1, . . . , yn)A(x)

with A ∈ gln(C(x)). For simplicity such system will be written using the vector field
∂

∂x
+ yA(x)

∂

∂y

where y = (y1, . . . , yn) and ∂
∂y =

Ü
∂
∂y1
...
∂
∂yn

ê
.

1.2.1. Going from the equation to its fundamental form. —

Definition 1.4. — A general solution is a vector of n holomorphic functions
y(x, c1, . . . , cn) of 1 + n arguments such that ∂

∂xy = yA(x) and det ∂y∂c 6≡ 0.

Because of linearity, the Jacobian satisfies
∂

∂x

Å
∂y

∂c

ã
=

Å
∂y

∂c

ã
A(x)

Lemma 1.5. — Up to some change of integrating constants, one can assume that the
dependency in c is linear, i.e. y = c∂y∂c .

The matrix ∂y
∂c is a fundamental solution of equation (E). Such a general solution

is called a linear general solution

1.2.2. GLn action from the right or the left. —

Lemma 1.6. — If c(d) is a invertible transformation such that for any linear general
solution y(x, c), y(x, c(d)) is another linear general solution then c(d) is a linear
transformation i.e. c(d) = dC for a matrix C ∈ GLn(C).

Two linear general solutions with same domain are related by a linear change of
c. This lemma is classical: two fundamental solution are related by multiplication on
the left by a constant coefficient invertible matrix.

Lemma 1.7. — If (x, y(x, y)) is a invertible transformation such that for any lin-
ear general solution y(x, c), y(x, y(x, c)) is a linear general solution then y(x, y) is
a linear gauge transformation i.e. y(x, y) = yY (x) for some open set U of C and
Y ∈ GLn(O(U)) satisfying ∂

∂xY = [Y,A(x)] .

Two linear general solutions with same range are related by a linear gauge trans-
formation. Let y be linear general solution with range over U ⊂ C. Then for any
C ∈ GLn(C) there is a Y ∈ GLn(O(U)) solution of ∂

∂xY = [Y,A(x)] such that
y(x, dC) = y(x, d)Y . This correspondence is one to one.
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