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LECTURES ON HALL ALGEBRAS

by

Olivier Schiffmann

Abstract. — This is a survey of the theory of Hall algebras of abelian categories,
with a special focus on examples. After providing the definition and giving the basic
properties of the Hall algebra of a finitary category, we deal in some details with the
three following cases: the Jordan quiver and the classical Hall algebra; quivers and
quantum groups; coherent sheaves over smooth projective curves and quantum loop
algebras. We finish with a brief chapter on the Drinfeld doubles of Hall algebras and
their relationship with derived categories.

Résumé. — Ce texte est un survol de la théorie des algébres de Hall des catégories
abéliennes. Notre approche est essentiellement basée sur ’étude de nombreux
exemples. Aprés avoir donné les définitions et propriétés de base des algébres de
Hall, nous traitons les case suivants: carquois de Jordan et algébre de Hall classique;
carquois et groupes quantiques; courbes projectives lisses et groupes quantiques de
lacets. Le dernier chapitre est dédié a la notion de double de Drinfeld d’une algébre
de Hall ainsi qu’aux rapports que ceux-ci entretiennent avec les catégories dérivées.

Introduction

These notes represent the written, expanded and improved version of a series of
lectures given at the winter school “Representation theory and related topics” held at
the ICTP in Trieste in January 2006, and at the summer school “Geometric methods
in representation theory” held at Grenoble in June 2008. The topic for the lectures
was “Hall algebras” and I have tried to give a survey of what I believe are the most
fundamental results and examples in this area. The material was divided into five
sections, each of which initially formed the content of (roughly) one lecture. These
are, in order of appearance on the blackboard:

e Lecture 1. D
e Lecture 2.

finition and first properties of (Ringel-)Hall algebras,
ordan quiver and the classical Hall algebra,
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e Lecture 3. Hall algebras of quivers and quantum groups,
e Lecture 4. Hall algebras of curves and quantum loop groups,
e Lecture 5. The Drinfeld double and Hall algebras in the derived setting.

By lack of time, chalk, f(and yes ), I was not able to survey with the
proper due respect se and Xiao’s Hall Lie algebra
associated to a 2-p [oén’s versions of Hall
algebras for deri 6 4 [ \ of Hall algebras of

cluster categorig i8], 4 3 echniques in counting
invariants suc see ! . These are thus
issi s theo of Hall
algebras, initiated by igdB): ough crucial for some important app

Hall algebras (such as

theory requires a rather di array of techniques (from algebraic
topology) and I chose no i e it here, but in the companion
generally, I apologize t H0S ose work deserves to appear i

Let me now desc he
of the various lectures.

s'subject of these notes as well as the content

Roughly speaking, the Hall, or Ringel-Hall algebra H 4 of a (small) abelian category
A encodes the structure of the space of extensions between objects in A. In slightly
more precise terms, H 4 is defined to be the C-vector space with a basis consisting of
symbols {[M]}, where M runs through the set of isomorphism classes of objects in
A, the multiplication between two basis elements [M] and [N] is a linear combination
of elements [P], where P runs through the set of extensions of M by N (i.e. middle
terms of short exact sequences 0 - N — P — M — 0), and the coefficient of
[P] in this product is obtained by counting the number of ways in which P may be
realized as an extension of M by N (see Lecture 1 for details). Of course, for this
counting procedure to make sense A has to satisfy certain strong finiteness conditions
(which are coined under the term finitary), but there are still plenty of such abelian
categories around. Another fruitful, slightly different (although equivalent) way of
thinking about the Hall algebra H 4 is to considegitsasthe algebra of finitely supported
functions on the “moduli space” M4 of objedts@f@4 (which is nothing but the set
of isoclasses of objects of A, equipped wit topology), endowed with a
natural convolution algebra structure (thi view that leads to some

Thus, whether one likes to think abou$ gbraic or more geometric
terms, Hall algebras previde rather subtle invariants of ﬁnltary abelian categories.
e “first order” homological properties of the category A (i.e.

t'(M, N)) which directly enter the definition of H 4,
trary (even infinite) homological dimension. However,
A is hereditary , i.e. of homological dimension one

the structure of the
but A may a priorj
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ne a comultiplication A : Hy — H4 ® Hy4 and, as was
antipode S : H 4 — H 4. These three operations are all
suitable and harmless twist which we prefer to ignore
in this introduction) H 4 with the structure of a Hopf algebra. All these constructions
are discussed in details in Lecture 1.

As the reader can well imagine, the above formalism was invented only after some
motivating examples were discovered. In fact, the above construction appears in var-
ious (dis)guises in domains such as modular or p-adic representation theory (in the
form of the functors of parabolic induction/restriction), number theory and auto-
morphic forms (Eisenstein series for function fields), and in the theory of symmetric
functions. The first occurence of the concept of a Hall algebra can probably be traced
back to the early days of the twentieth century in the work of E. Steinitz (a few
years before P. Hall was born) which, in modern language, deals with the ¢

eral fundamental objects in mathematics such as symmetric functio
varieties and nilpotent cones. After studying in some details Steinti

e early 1990s that the Hall algebra Hp ep G of the category of F,-

a‘Dynkin quiver Q (equiped with an arbitrary orientation) provides
a realization of the positive part U(b) of the enveloping algebra U(g) of the simple
complex Lie algebra g assgciated to the same Dynkin diagram (to be more precise,

It is also at that ti
egory was formalize
ly infinite-dimensional) Kac-Moody algebras, and
later completed by Green. The existence of a close relationship between the rep-
ation theory of quivers on one hand, and the structure of simple or Kac-Moody

pndence. After recalling the forerunning results of Gabriel and Kac, we
state and prove Ringel’s and Green’s fundamental theorems in the third Lecture.

Apart from the g ories of F,-representations of quivers, a large source of finitary
categories of glob sion one is provided by the categories Coh(X) of coherent
sheaves on somg ojective curve X defined over a finite field F;. As pointed
out by Kapran all algebra Hgop(x) may be interpreted in the context

of automorp function field of X. Using this interpretation, he wrote
down a set of relations satisfied by Hcon(x) for an arbitrary X (these relations involve
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ain component the zeta function of X). These relations turn out to determine
etely Hoon(x) when X =~ P! but this is most likely not true in higher genus (see
ever, for a combinatorial approach).

other direction,
alizations Coh(X, ») of fl
which depend on the of points Aq, ..., A\, € P! and multiplicities p1,...,p, € N
associated to each
properties with th

enzing discovered in the mid-80’s some important gener-

gory of G-equivariant coherent sheaves on some curve Y acted upo
G, for which Y/G ~ P!. The Hall algebras Hcon(x,,,) are studj
is shown that they provide a realization of the positive part of ¢
algebras of loop algebras of Kag
eral not Kac-Moody algebrast fox instance when X, 5 is of “genus one” one gets the

ne, or elliptic Liefal as £, = g[ttl, sT @ K for a Lie algebra g of type

found d to loop algebras of Kac-Moody algebras as
e above results concerning Hall algebras of coherent sheaves on curves
of Lecture 4, and should be viewed as analogues, in the context of
curves, of Gabriel’s, Kac’s and Ringel’s theorems for quivers.

Finally in the last lecture, we state various results and conjectures regarding the
behavior of Hall algebras under derived equivalences. Recall that taking the Drinfeld
double is a process which turns a Hopf algebra H into another one DH which is twice
as big as H and which is self-dual; for instance thef Deinfeld double of the positive
part U,(b) of a quantized enveloping algebra is i hic to the whole quantized
enveloping algebra U, (g). The guiding heuristic/pri which has recently been
established in a wide class of cases by T. Cy that although the Hall
algebras H 4 and Hp of two derived equivale ry categories need not
be isomorphic, their Drinfeld doubles DH 4 and DHp should be. More generally, any
fully faithful triangulated functor F : D°(A) — D®(B) between derived categories
should give rise to a homomorphism of algebras F, : DH4 — DHg. In particular,
the group of autoequivalences of the derived category D®(A)is expected to act on
DH 4 by algebra automorphisms. As supporting example and ivation for the above
c curve X acts on

A recent theorem of
which is linear over an a 5 a tilting object
(see Lecture 5.) is derived equivalent to either Rep ver ) or Coh(X, »)
for some weighted projective line X, 5. Although the atie which are linear
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the above heuristic principle then the results of Lectures 3 and 4 essentially describe
the Hall algebra of any finitary hereditary category which possesses a tilting object.
Of course the case of finitary hereditary categories which do not possess a tilting
object (this corresponds to curves of higher genus) is still very mysterious, as is the
case of categories of higher global dimension (this corresponds to higher-dimensional
varieties) for which virtually nothing is known.

A final word concerning the style of these Lecture notes. They follow a leisurely pace
and many examples are included and worked out in details. Nevertheless, because they
are mostly (though not only!) aimed at people interested in representation theory of
finite-dimensional algebras, I have decided to assume some basic homological algebra
and, starting from Lecture 3, a little familiarity with quivers. On the other hand, I
assume nothing from Lie algebras and quantum groups theory. Hence I have included
in a long appendix a “crash course” on simple and Kac-Moody Lie algebras, loop
algebras, and the corresponding quantum groups.

The first four Lectures follow each other in a logical order, but a reader allergic to
examples could well jump to Lecture 5 directly after Lecture 1.

1. Lecture 1

The aim of this first Lecture is to introduce in as much generality as possible the
notion of the Hall algebra of a finitray abelian category, and to describe in details all
the extra structures (coproduct, antipode,...) which have been discovered over the
time and which one can put on such an algebra. A final paragraph briefly discusses
some functoriality properties of this construction. Examples of Hall algebras abound
in Lectures 2, 3 and 4, and the reader is invited to have a look at them as he proceeds
through this first Lecture.

1.1. Finitary categories

1.1.1. — A small abelian category A is called finitary if the following two conditions
are satisfied:

i) For any two objects M, N € Ob(A) we have [Hom(M, N)| < oo,
ii) For any two objects M, N € Ob(A) we have |Ext' (M, N)| < cc.

In most, if not all examples of finitary categories which we will be considering in
these notes, A is linear over some finite field F,, and we have

(1.1) dim Hom(M, N) < oo,  dim Ext'(M,N) < oo

for any pair of objects M, N € Ob(.A). Examples of such categories are provided
by the categories RequQ of (finite dimensional) Fg-representations of a quiver, or
more generally by the categories Mod A of finite-dimensional representations of a
finite-dimensional Fy-algebra A. For another class of examples of a more geometric
flavor, one may consider the categories Coh(X) of coherent sheaves on some projective
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