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LECTURES ON HALL ALGEBRAS

by

Olivier Schiffmann

Abstract. — This is a survey of the theory of Hall algebras of abelian categories,
with a special focus on examples. After providing the definition and giving the basic
properties of the Hall algebra of a finitary category, we deal in some details with the
three following cases: the Jordan quiver and the classical Hall algebra; quivers and
quantum groups; coherent sheaves over smooth projective curves and quantum loop
algebras. We finish with a brief chapter on the Drinfeld doubles of Hall algebras and
their relationship with derived categories.

Résumé. — Ce texte est un survol de la théorie des algèbres de Hall des catégories
abéliennes. Notre approche est essentiellement basée sur l’étude de nombreux
exemples. Après avoir donné les définitions et propriétés de base des algèbres de
Hall, nous traitons les case suivants: carquois de Jordan et algèbre de Hall classique;
carquois et groupes quantiques; courbes projectives lisses et groupes quantiques de
lacets. Le dernier chapitre est dédié à la notion de double de Drinfeld d’une algèbre
de Hall ainsi qu’aux rapports que ceux-ci entretiennent avec les catégories dérivées.

Introduction

These notes represent the written, expanded and improved version of a series of
lectures given at the winter school “Representation theory and related topics” held at
the ICTP in Trieste in January 2006, and at the summer school “Geometric methods
in representation theory” held at Grenoble in June 2008. The topic for the lectures
was “Hall algebras” and I have tried to give a survey of what I believe are the most
fundamental results and examples in this area. The material was divided into five
sections, each of which initially formed the content of (roughly) one lecture. These
are, in order of appearance on the blackboard:

• Lecture 1. Definition and first properties of (Ringel-)Hall algebras,
• Lecture 2. The Jordan quiver and the classical Hall algebra,
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• Lecture 3. Hall algebras of quivers and quantum groups,
• Lecture 4. Hall algebras of curves and quantum loop groups,
• Lecture 5. The Drinfeld double and Hall algebras in the derived setting.

By lack of time, chalk, (and yes, competence!), I was not able to survey with the
proper due respect several important results (notably Peng and Xiao’s Hall Lie algebra
associated to a 2-periodic derived category [?], Kapranov and Toën’s versions of Hall
algebras for derived categories, see [?, ?], or the recent theory of Hall algebras of
cluster categories, see [?], [?], or the recent use of Hall algebra techniques in counting
invariants such as in Donaldson-Thomas theory, see [?, ?, ?], . . . ). These are thus
largely absent from these notes. Also missing is the whole geometric theory of Hall
algebras, initiated by Lusztig [?]: although crucial for some important applications of
Hall algebras (such as the theory of crystal or canonical bases in quantum groups), this
theory requires a rather different array of techniques (from algebraic geometry and
topology) and I chose not to include it here, but in the companion survey [?]. More
generally, I apologize to all those whose work deserves to appear in any reasonable
survey on the topic, but is unfortunately not to be found in this one. Luckily, other
texts are available, such as [?, ?, ?]. There are essentially no new results in this text.

Let me now describe in a few words the subject of these notes as well as the content
of the various lectures.

Roughly speaking, the Hall, or Ringel-Hall algebra HA of a (small) abelian category
A encodes the structure of the space of extensions between objects in A. In slightly
more precise terms, HA is defined to be the C-vector space with a basis consisting of
symbols {[M ]}, where M runs through the set of isomorphism classes of objects in
A; the multiplication between two basis elements [M ] and [N ] is a linear combination
of elements [P ], where P runs through the set of extensions of M by N (i.e. middle
terms of short exact sequences 0 → N → P → M → 0), and the coefficient of
[P ] in this product is obtained by counting the number of ways in which P may be
realized as an extension of M by N (see Lecture 1 for details). Of course, for this
counting procedure to make sense A has to satisfy certain strong finiteness conditions
(which are coined under the term finitary), but there are still plenty of such abelian
categories around. Another fruitful, slightly different (although equivalent) way of
thinking about the Hall algebra HA is to consider it as the algebra of finitely supported
functions on the “moduli space” MA of objects of A (which is nothing but the set
of isoclasses of objects of A, equipped with the discrete topology), endowed with a
natural convolution algebra structure (this is the point of view that leads to some
more geometric versions of Hall algebras, as in [?, ?, ?]).

Thus, whether one likes to think about it in more algebraic or more geometric
terms, Hall algebras provide rather subtle invariants of finitary abelian categories.
Note that it is somehow the “first order” homological properties of the category A (i.e.
the structure of the groups Ext1(M,N)) which directly enter the definition of HA,
but A may a priori be of arbitrary (even infinite) homological dimension. However,
as discovered by Green [?], when A is hereditary , i.e. of homological dimension one
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or less, it is possible to define a comultiplication ∆ : HA → HA ⊗HA and, as was
later realized by Xiao [?], an antipode S : HA → HA. These three operations are all
compatible and endow (after a suitable and harmless twist which we prefer to ignore
in this introduction) HA with the structure of a Hopf algebra. All these constructions
are discussed in details in Lecture 1.

As the reader can well imagine, the above formalism was invented only after some
motivating examples were discovered. In fact, the above construction appears in var-
ious (dis)guises in domains such as modular or p-adic representation theory (in the
form of the functors of parabolic induction/restriction), number theory and auto-
morphic forms (Eisenstein series for function fields), and in the theory of symmetric
functions. The first occurence of the concept of a Hall algebra can probably be traced
back to the early days of the twentieth century in the work of E. Steinitz (a few
years before P. Hall was born) which, in modern language, deals with the case of the
category A of abelian p-groups for p a fixed prime number. This last example, the
so-called classical Hall algebra is of particular interest due to its close relation to sev-
eral fundamental objects in mathematics such as symmetric functions (see [?]), flag
varieties and nilpotent cones. After studying in some details Steintiz’s classical Hall
algebra we briefly state some of the other occurences of (examples of) Hall algebras
in Lecture 2.

The interest for Hall algebras suddenly exploded after C. Ringel’s groundbreaking
discovery ([?]) in the early 1990s that the Hall algebra HRep ~Q of the category of Fq-
representations of a Dynkin quiver ~Q (equiped with an arbitrary orientation) provides
a realization of the positive part U(b) of the enveloping algebra U(g) of the simple
complex Lie algebra g associated to the same Dynkin diagram (to be more precise,
one gets a quantized enveloping algebra Uv(g), where the deformation parameter v
is related to the order q of the finite field Fq).

It is also at that time that the notion of a Hall algebra associated to a finitary cat-
egory was formalized (see [?]). These results were subsequently extended to arbitrary
quivers in which case one gets (usually infinite-dimensional) Kac-Moody algebras, and
were later completed by Green. The existence of a close relationship between the rep-
resentation theory of quivers on one hand, and the structure of simple or Kac-Moody
Lie algebras on the other hand was well-known since the seminal work of Gabriel,
Kac and others on the classification of indecomposable representations of quivers (see
[?, ?]). Hall algebras thus provide a concrete, beautiful (and useful !) realization of
this correspondence. After recalling the forerunning results of Gabriel and Kac, we
state and prove Ringel’s and Green’s fundamental theorems in the third Lecture.

Apart from the categories of Fq-representations of quivers, a large source of finitary
categories of global dimension one is provided by the categories Coh(X) of coherent
sheaves on some smooth projective curve X defined over a finite field Fq. As pointed
out by Kapranov in [?], the Hall algebra HCoh(X) may be interpreted in the context
of automorphic forms over the function field of X. Using this interpretation, he wrote
down a set of relations satisfied by HCoh(X) for an arbitrary X (these relations involve
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as a main component the zeta function of X). These relations turn out to determine
completely HCoh(X) when X ' P1 but this is most likely not true in higher genus (see
[?], however, for a combinatorial approach).

In another direction, H. Lenzing discovered in the mid-80’s some important gener-
alizations Coh(Xp,λ) of the category Coh(P1)– the so-called weighted projective lines–
which depend on the choice of points λ1, . . . , λr ∈ P1 and multiplicities p1, . . . , pr ∈ N
associated to each point ([?]). The category Coh(Xp,λ) is hereditary and shares many
properties with the categories Coh(X) of coherent sheaves on curves (not necessarily
of genus zero). In fact, in good characteristics, Coh(Xp,λ) is equivalent to the cate-
gory of G-equivariant coherent sheaves on some curve Y acted upon by a finite group
G, for which Y/G ' P1. The Hall algebras HCoh(Xp,λ) are studied in [?], where it
is shown that they provide a realization of the positive part of quantized enveloping
algebras of loop algebras of Kac-Moody algebras. Note that these algebras are in gen-
eral not Kac-Moody algebras: for instance when Xp,λ is of “genus one” one gets the
double affine, or elliptic Lie algebras Eg = g[t±1, s±1]⊕K for a Lie algebra g of type
D4, E6, E7 or E8. Simultaneously, Crawley-Boevey was led in his beautiful work on
the Deligne-Simpson problem [?] to study the classes of indecomposable sheaves in
Coh(Xp,λ) and found them to be related to loop algebras of Kac-Moody algebras as
well (see [?]). The above results concerning Hall algebras of coherent sheaves on curves
form the content of Lecture 4, and should be viewed as analogues, in the context of
curves, of Gabriel’s, Kac’s and Ringel’s theorems for quivers.

Finally in the last lecture, we state various results and conjectures regarding the
behavior of Hall algebras under derived equivalences. Recall that taking the Drinfeld
double is a process which turns a Hopf algebra H into another one DH which is twice
as big as H and which is self-dual; for instance the Drinfeld double of the positive
part Uv(b) of a quantized enveloping algebra is isomorphic to the whole quantized
enveloping algebra Uv(g). The guiding heuristic principle –which has recently been
established in a wide class of cases by T. Cramer [?]– is that although the Hall
algebras HA and HB of two derived equivalent finitary hereditary categories need not
be isomorphic, their Drinfeld doubles DHA and DHB should be. More generally, any
fully faithful triangulated functor F : Db(A) → Db(B) between derived categories
should give rise to a homomorphism of algebras F? : DHA → DHB. In particular,
the group of autoequivalences of the derived category Db(A) is expected to act on
DHA by algebra automorphisms. As supporting example and motivation for the above
principle, we show how the group Aut(Db(Coh(X))) for an elliptic curve X acts on
DHCoh(X). This action turns out to be the key point in understanding the structure
of the algebra DHCoh(X) (the elliptic Hall algebra studied in [?]).

A recent theorem of Happel [?] states that any (connected) hereditary category
which is linear over an algebraically closed field k and which possesses a tilting object
(see Lecture 5.) is derived equivalent to either Repk ~Q for some quiver ~Q or Coh(Xp,λ)

for some weighted projective line Xp,λ. Although the case of categories which are linear
over a finite field k is slightly more complicated (see [?], and also [?]), if one believes
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the above heuristic principle then the results of Lectures 3 and 4 essentially describe
the Hall algebra of any finitary hereditary category which possesses a tilting object.
Of course the case of finitary hereditary categories which do not possess a tilting
object (this corresponds to curves of higher genus) is still very mysterious, as is the
case of categories of higher global dimension (this corresponds to higher-dimensional
varieties) for which virtually nothing is known.

A final word concerning the style of these Lecture notes. They follow a leisurely pace
and many examples are included and worked out in details. Nevertheless, because they
are mostly (though not only!) aimed at people interested in representation theory of
finite-dimensional algebras, I have decided to assume some basic homological algebra
and, starting from Lecture 3, a little familiarity with quivers. On the other hand, I
assume nothing from Lie algebras and quantum groups theory. Hence I have included
in a long appendix a “crash course” on simple and Kac-Moody Lie algebras, loop
algebras, and the corresponding quantum groups.

The first four Lectures follow each other in a logical order, but a reader allergic to
examples could well jump to Lecture 5 directly after Lecture 1.

1. Lecture 1

The aim of this first Lecture is to introduce in as much generality as possible the
notion of the Hall algebra of a finitray abelian category, and to describe in details all
the extra structures (coproduct, antipode,. . . ) which have been discovered over the
time and which one can put on such an algebra. A final paragraph briefly discusses
some functoriality properties of this construction. Examples of Hall algebras abound
in Lectures 2, 3 and 4, and the reader is invited to have a look at them as he proceeds
through this first Lecture.

1.1. Finitary categories

1.1.1. — A small abelian category A is called finitary if the following two conditions
are satisfied:

i) For any two objects M,N ∈ Ob(A) we have |Hom(M,N)| <∞,
ii) For any two objects M,N ∈ Ob(A) we have |Ext1(M,N)| <∞.

In most, if not all examples of finitary categories which we will be considering in
these notes, A is linear over some finite field Fq, and we have

(1.1) dim Hom(M,N) <∞, dim Ext1(M,N) <∞

for any pair of objects M,N ∈ Ob(A). Examples of such categories are provided
by the categories RepFq

~Q of (finite dimensional) Fq-representations of a quiver, or
more generally by the categories ModA of finite-dimensional representations of a
finite-dimensional Fq-algebra A. For another class of examples of a more geometric
flavor, one may consider the categories Coh(X) of coherent sheaves on some projective
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