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Abstract. — This paper is an introduction to the use of perverse sheaves with positive

characteristic coefficients in modular representation theory. In the first part, we

survey results relating singularities in finite and affine Schubert varieties and nilpotent

cones to modular representations of reductive groups and their Weyl groups. The

second part is a brief introduction to the theory of perverse sheaves with an emphasis

on the case of positive characteristic and integral coefficients. In the final part, we

provide some explicit examples of stalks of intersection cohomology complexes with

integral or positive characteristic coefficients in nilpotent cones, mostly in type A.

Some of these computations might be new.

Résumé (Faisceaux pervers et théorie des représentations modulaires). — Cet article est une

introduction à l’emploi des faisceaux pervers à coefficients en caractéristique non nulle

en théorie des représentations modulaires. Dans la première partie, nous rappelons

des résultats reliant les singularités des variétés de Schubert finies et affines, ainsi que

celles des cônes nilpotents, aux représentations modulaires des groupes réductifs et de

leurs groupes de Weyl. La deuxième partie est une brève introduction à la théorie des

faisceaux pervers, l’accent étant mis sur le cas où l’anneau de coefficients est un corps

de caractéristique non nulle, ou bien l’anneau des entiers. Dans la dernière partie,

nous donnons des exemples explicites de calculs de fibres de complexes d’intersec-

tion à coefficients entiers ou en caractéristique non nulle dans des cônes nilpotents,

essentiellement en type A. Certains de ces calculs sont peut-être nouveaux.

Introduction

Representation theory has a very different flavour in positive characteristic. When

one studies the category of representations of a finite group or a reductive group

over a field of characteristic 0 (e.g. C), one of the first observations to be made is

that this category is semi-simple, meaning that every representation is isomorphic

to a direct sum of irreducible representations. This fundamental fact helps answer
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many basic questions, e.g. the dimensions of simple modules, character formulae, and

tensor product multiplicities. However, when one considers representations over fields

of positive characteristic (often referred to as “modular” representations) the resulting

categories are generally not semi-simple. This makes their study considerably more

complicated and in many cases even basic questions remain unanswered. (1)

It turns out that some questions in representation theory have geometric coun-

terparts. The connection is obtained via the category of perverse sheaves, a certain

category that may be associated to an algebraic variety and whose structure reflects

the geometry of the underlying variety and its subvarieties. The category of per-

verse sheaves depends on a choice of coefficient field and, as in representation theory,

different choices of coefficient field can yield very different categories.

Since the introduction of perverse sheaves it has been realised that many phenom-

ena in Lie theory can be explained in terms of categories of perverse sheaves and their

simple objects — intersection cohomology complexes. In studying representations of

reductive groups and related objects, singular varieties arise naturally (Schubert va-

rieties and their generalizations, nilpotent varieties, quiver varieties. . . ). It turns out

that the invariants of these singularities often carry representation theoretic informa-

tion. For an impressive list of such applications, see [42]. This includes constructing

representations, computing their characters, and constructing nice bases for them.

However, most of these applications use a field k of characteristic zero for coeffi-

cients. In this paper, we want to give the reader a flavour for perverse sheaves and

intersection cohomology with positive characteristic coefficients.

In the first section of this article we survey three connections between modular

representation theory and perverse sheaves.

The geometric setting for the first result — known as the geometric Satake theorem

— is a space (in fact an “ind-scheme”) associated to a complex reductive group G.

This space, G(C((t)))/G(C[[t]]), commonly referred to as the affine Grassmannian,

is a homogeneous space for the algebraic loop group G(C((t))). Under the action of

G(C[[t]]), it breaks up as a union of infinitely many finite-dimensional orbits. Theo-

rems of Lusztig [35], Ginzburg [21], Beilinson-Drinfeld [6], and Mirković-Vilonen [43]

explain that encoded in the geometry of the affine Grassmannian and its orbit closures

is the algebraic representation theory over any field (and even over the integers) of

the split form of the reductive group G∨ with root data dual to that of G, also known

as the Langlands dual group.

The second family of results that we discuss involves the geometry of the finite flag
variety G/B where again G is a complex reductive group, and a generalization of it

closely related to the affine Grassmannian known as the affine flag varietyG(C((t)))/I.

We describe theorems of Soergel [50] and Fiebig [17, 18, 19, 20] which show that

the geometry of these spaces can be used to understand the modular representation

theory of the Langlands dual group G∨k for k a field of characteristic larger than the

(1) For an introduction to the modular representation theory of finite groups we recommend the

third part of [46], and for that of reductive groups, [24].
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Coxeter number of G∨k . In doing so, Fiebig is able to give a new proof of the celebrated

Lusztig conjecture with an explicit bound on the characteristic.

The third theorem to be discussed is centered around the geometry of the variety

N of nilpotent elements of a Lie algebra g, known as the nilpotent cone. The nilpotent

cone has a natural resolution and, in 1976, Springer [51] showed that the Weyl group

acts on the `-adic cohomology of the fibers of this resolution. He showed moreover

that from this collection of representations one could recover all of the irreducible

`-adic representations and that they came with a natural labelling by a nilpotent

adjoint orbit with an irreducible G-equivariant local system. This groundbreaking

discovery was followed by a series of related constructions, one of which, based on the

Fourier-Deligne transform, has recently been used by the first author [25] to establish

a modular version of the Springer correspondence.

The second goal of this article which occupies the second and third sections is

to provide an introduction to “modular” perverse sheaves, in other words perverse

sheaves with coefficients in a field of positive characteristic. We begin by recalling

the theory of perverse sheaves, highlighting the differences between characteristic zero

and characteristic p, and also the case of integer coefficients. We treat in detail the

case of the nilpotent cone of sl2.

In the last part, we treat more examples in nilpotent cones. We calculate all the

IC stalks in all characteristics 6= 3 for the nilpotent cone of sl3, and all the IC stalks

in all characteristics 6= 2 for the subvariety of the nilpotent cone of sl4 consisting of

the matrices which square to zero. Before that, we recall how to deal with simple and

minimal singularities in type A, for two reasons: we need them for the three-strata

calculations, and they can be dealt with more easily than for arbitrary type (which

was done in [26, 27]). As a complement, we give a similar direct approach for a

minimal singularity in the nilpotent cone of sp2n.

The first two parts partly correspond to the talks given by the first and third author

during the summer school, whose titles were “Intersection cohomology in positive

characteristic I, II”. The third part contains calculations that the three of us did

together while in Grenoble. These calculations were the first non-trivial examples

involving three strata that we were able to do.

It is a pleasure to thank Michel Brion for organizing this conference and allowing

two of us to speak, and the three of us to meet. We would like to thank him, as

well as Alberto Arabia, Peter Fiebig, Jim Humphreys, Jens Carsten Jantzen, Joel

Kamnitzer and Wolfgang Soergel for valuable discussions and correspondence. The

second author would also like to acknowledge the mathematics department at the

University of Texas at Austin and his advisor, David Ben-Zvi, for partially funding

the travel allowing him to attend this conference and meet his fellow coauthors.

1. Motivation

Perverse sheaves with coefficients in positive characteristic appear in a number of

different contexts as geometrically encoding certain parts of modular representation
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theory. This section will provide a survey of three examples of this phenomenon: the

geometric Satake theorem, the work of Soergel and Fiebig on Lusztig’s conjecture,

and the modular Springer correspondence. The corresponding geometry for the three

pictures will be respectively affine Grassmannians, finite and affine flag varieties, and

nilpotent cones.

Throughout, GZ will denote a split connected reductive group scheme over Z.

Given a commutative ring k, we denote by Gk the split reductive group scheme over

k obtained by extension of scalars

Gk = Spec k ×Spec Z GZ.

In Sections 1.1 and 1.2 we will consider GC, while in Section 1.3, we will consider GFq .

We fix a split maximal torus TZ in GZ. We denote by

(X∗(TZ), R∗, X∗(TZ), R∗)

the root datum of (GZ, TZ). We denote by (G∨Z , T
∨
Z ) the pair associated to the dual

root datum. Thus G∨Z is the Langlands dual group. In Subsections 1.1 and 1.2, we

will consider representations of G∨k = Spec k×Spec ZG
∨
Z , where k can be, for example,

a field of characteristic p. We have X∗(T∨Z ) = X∗(TZ) and X∗(T
∨
Z ) = X∗(TZ).

We also fix a Borel subgroup BZ of GZ containing TZ. This determines a Borel

subgroup B∨Z of G∨Z containing T∨Z . This also determines bases of simple roots ∆ ⊂ R∗
and ∆∨ ⊂ R∗. It will be convenient to choose ∆∗ := −∆∨ as a basis for R∗ instead,

so that the coroots corresponding to B∨Z are the negative coroots R−∗ = −R+
∗ .

1.1. The geometric Satake theorem. — In this subsection and the next one, to simplify

the notation, we will identify the group schemes GC ⊃ BC ⊃ TC with their groups of

C-points G ⊃ B ⊃ T .

We denote by K = C((t)) the field of Laurent series and by O = C[[t]] the ring of

Taylor series. The affine (or loop) Grassmannian Gr = GrG is the homogeneous space

G(K)/G(O). It has the structure of an ind-scheme. In what follows we will attempt

to sketch a rough outline of this space and then briefly explain how perverse sheaves

on it are related to the representation theory of G∨k , where k is any commutative ring

of finite global dimension. We refer the reader to [4, 6, 32, 43] for more details and

proofs.

We have a natural embedding of the coweight lattice X∗(T ) = Hom(Gm, T ) into

the affine Grassmannian: each λ ∈ X∗(T ) defines a point tλ of G(K) via

SpecK = Spec C((t))
c−→ Gm = Spec C[t, t−1]

λ−→ T
i−→ G

where c comes from the inclusion C[t, t−1] ↪→ C((t)) and i : T → G is the natural

inclusion, and hence a point [tλ] in Gr = G(K)/G(O).

For example, when G = GLn and T is the subgroup of diagonal matrices the

elements of X∗(T ) consist of n-tuples of integers λ = (λ1, . . . , λn) and they sit inside
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