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Abstract. — A W-algebra (of finite type)W is a certain associative algebra associated

with a semisimple Lie algebra, say g, and its nilpotent element, say e. The goal of

this paper is to study the category O for W introduced by Brundan, Goodwin and

Kleshchev. We establish an equivalence of this category with a certain category of

g-modules. In the case when e is of principal Levi type (this is always so when g is of

type A) the category of g-modules in interest is the category of generalized Whittaker

modules introduced by McDowell, and studied by Milicic-Soergel and Backelin.

Résumé (Sur la structure de la catégorieO deW-algèbres). — Une W-algèbre (de type fini)

W est une certaine algèbre associative associée à une algèbre de Lie semisimple g et

à un élément nilpotent e ∈ g. Le but de l’article est d’étudier la catégorie O de W,

introduite par Brundan, Goodwin et Kleshchev. Nous obtenons une équivalence de

cette catégorie avec une certaine catégorie de g-modules. Lorsque e est principal dans

une sous-algèbre de Levi de g (ce qui est toujours le cas en type A), cette catégorie

de g-modules est la catégorie des modules de Whittaker généralisés introduite par

McDowell, et étudiée par Milicic-Soergel et Backelin.

1. Introduction

Let g be a semisimple Lie algebra over an algebraically closed field K of character-

istic zero. Choose a nilpotent element e ∈ g. Associated to the pair (g, e) is a certain

associative algebra W, which is closely related to the universal enveloping algebra

U(g). It was studied extensively during the last decade starting from Premet’s paper

[19], see also [5, 6, 7, 9, 10, 13, 15], [20]-[21]. Definitions of a W-algebra due to

Premet, [19], and the author, [15], are recalled in Section 2.

In the representation theory of U(g) a crucial role is played by the Bernstein-

Gelfand-Gelfand category O of U(g)-modules. In particular, all finite dimensional
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U(g)-modules and all Verma modules belong to O. In [5] Brundan, Goodwin and

Kleshchev introduced the notion of the category O forW. This category also contains

all finite dimensional W-modules as well as analogs of Verma modules. See Section 3

for definitions.

The BGK category O is not always very useful. For example, for a distinguished

nilpotent element e ∈ g (i.e., such that the centralizer zg(e) contains no nonzero

semisimple elements) O consists precisely of finite dimensional modules. The other

extreme is the case when e is of principal Levi type. This means that there is a Levi

subalgebra l ⊂ g such that e is a principal nilpotent element in l. Here the BGK

category O looks quite similar to the BGG one.

In [5], Conjecture 5.3, the authors conjectured that for e of principal Levi type

there exists a category equivalence between their category O and a certain category of

generalized Whittaker modules introduced by McDowell, [16], and studied by Milicic

and Soergel, [17], and Backelin, [1]. We postpone the description of this category

until Section 4. The main result of this paper, Theorem 4.1, gives a proof of that

conjecture.

Let us describe the content of this paper. In Section 2 we recall the definition of W-

algebras and the basic theorem of our paper [15], the so called decomposition theorem.

In Section 3 the notion of the category O for a W-algebra is recalled. In Section 4

we introduce the category of generalized Whittaker modules. Special cases of this

category are, firstly, Skryabin’s category of Whittaker modules (or, more precisely, the

full subcategory there consisting of all finitely generated modules) and, secondly, the

categories studied in [1, 16, 17]. Then we state the category equivalence theorem 4.1

generalizing the Skryabin equivalence theorem from the appendix to [19] and proving

the conjecture of Brundan, Goodwin and Kleshchev. The proof of Theorem 4.1 is

given in Section 5. Essentially, we generalize the proof of the Skryabin equivalence

theorem given in [15], Subsection 3.3, checking that certain topological algebras are

isomorphic.

Finally, in Section 6 we will describe some applications of our results.

Acknowledgements. — I am grateful to Alexander Kleshchev, who brought this prob-

lem to my attention. I also thank Jonathan Brundan for explaining the application

of my results to the classification of representations of Yangians. Finally, I thank the

referee for useful comments on previous versions of this paper that helped to improve

the exposition.

2. W-algebras

Throughout the paper everything is defined over an algebraically closed field K of

characteristic 0.

Let G be a reductive algebraic group, g its Lie algebra, and U the universal envelop-

ing algebra of g. Fix a nonzero nilpotent element e ∈ g. Choose an sl2-triple (e, h, f)

in g and set Q := ZG(e, h, f). Denote by T a maximal torus of Q. Also introduce a
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grading on g by eigenvalues of adh: g :=
⊕
g(i), g(i) := {ξ ∈ g|[h, ξ] = iξ}. Consider

the one-parameter subgroup γ : K× → G with d
dt |t=0γ = h. Choose a G-invariant

symmetric form (·, ·) on g, whose restriction to any algebraic reductive subalgebra is

non-degenerate. This form allows one to identify g ∼= g∗. Let χ = (e, ·) be the element

of g∗ corresponding to e.

Equip the space g(−1) with a symplectic form ωχ as follows: ωχ(ξ, η) = 〈χ, [ξ, η]〉.
Fix a lagrangian subspace l ⊂ g(−1) and define the subalgebra m := l⊕

⊕
i6−2 g(i) ⊂

g. According to Premet, [19], a W-algebra W associated with e is, by definition,

(U/Umχ)adm, where mχ := {ξ − 〈χ, ξ〉, ξ ∈ m}. As Gan and Ginzburg checked in [9],

W does not depend on the choice of l up to some natural isomorphism. Thus we can

choose a T -stable lagrangian subspace l ⊂ g(−1) so we get an action of T onW. Note

that the image of t in U/Umχ consists of adm-invariants, for m is t-stable and χ is

annihilated by t. So we get an embedding t ↪→W. It is compatible with the action of

T in the sense that the differential of the T -action coincides with the adjoint action

of t ⊂ W. In fact, from the construction in [9] it follows that Q acts on W by algebra

automorphisms, see [20], Subsection 2.2, for details.

One important feature of W is that the category W- Mod of (left) W-modules is

equivalent to a certain full subcategory in U-Mod to be described now. We say that

a left U-module M is a Whittaker module if mχ acts on M by locally nilpotent endo-

morphisms. In this case Mmχ = {m ∈M |ξm = 〈χ, ξ〉m,∀ξ ∈ m} is a W-module. As

Skryabin proved in the appendix to [19], the functor M 7→Mmχ is an equivalence be-

tween the category of Whittaker U-modules and W-Mod. A quasiinverse equivalence

is given by N 7→ S(N) := (U/Umχ)⊗W N , where U/Umχ is equipped with a natural

structure of a U-W-bimodule.

Note also that the center of W can be identified with the center Z of U , as follows.

It is clear that Z ⊂ Uadm whence we have a homomorphism Z → W. This homomor-

phism is injective and its image coincides with the center of W, see [20], the footnote

to the Question 5.1.

An alternative description of W was given in [15]. Define the Slodowy slice S :=

e + zg(f). It will be convenient for us to consider S as a subvariety in g∗. Define

the Kazhdan action of K× on g∗ by t.α = t−2γ(t)α. This action preserves S and,

moreover, limt→∞ t.s = χ for all s ∈ S. Also note that Q acts on S in a natural way.

Set V := [g, f ]. Equip V with the symplectic form ω(ξ, η) = 〈χ, [ξ, η]〉, the action

of K×, t.v = γ(t)−1v, and the natural action of Q.

Now let Y be a smooth affine variety equipped with commuting actions of a re-

ductive group Q and of the one-dimensional torus K×. For instance, one can take

Y = g∗, S, V ∗ equipped with the natural actions of Q = ZG(e, h, f) and the Kazhdan

actions of K×. Note that the grading on K[S] induced by the Kazhdan action is

positive.

As follows from the explanation in [13], Subsection 2.1, for Y = g∗, V ∗, S there are

certain star-products ∗ : K[Y ]⊗K[Y ] → K[Y ][~], f ∗ g =
∑∞
i=0Di(f, g)~2i, satisfying

the following conditions.
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1. ∗ is associative, that is, a natural extension of ∗ to K[Y ][~] turns K[Y ][~] into

an associative K[~]-algebra, and 1 is a unit for this product.

2. D0(f, g) = fg for all f, g ∈ K[Y ].

3. Di(·, ·) is a bidifferential operator of order at most i in each variable.

4. ∗ is a Q-equivariant map K[Y ]⊗K[Y ]→ K[Y ][~].

5. ∗ is homogeneous with respect to K×. This, by definition, means that the degree

of Di is −2i for all i.

6. There is a Q-equivariant map q → K[Y ][~], ξ 7→ “Hξ, such that ~−2[“Hξ, •] coin-

cides with the image of ξ under the differential of the Q-action on K[Y ][~].

This construction allows one to equip K[g∗],K[V ∗],K[S] with new associative prod-

ucts ∗1 defined by f ∗1 g =
∑∞
i=0Di(f, g). The algebras K[g∗],K[V ∗],K[S] with these

new products are T (and, in fact, Q)-equivariantly isomorphic to U , the Weyl algebra

AV of the vector space V , and the W-algebra W, respectively.

We finish this section by recalling a decomposition result from [15], which plays a

crucial role in our construction.

Recall that if X is an affine algebraic variety and x a point of X we can consider

the completion K[X]∧x := lim←−k K[X]/K[X]mkx, where mx denotes the maximal ideal

corresponding to x. If X is an affine space, then taking x for the origin and choosing a

basis in X, we can identify K[X]∧x with the algebra of formal power series. The algebra

K[X]∧x is equipped with the topology of the inverse image. If D : K[X] ⊗ K[X] →
K[X] is a bidifferential operator, then it can be uniquely extended to a continuous

bidifferential operator K[X]∧x ⊗K[X]∧x → K[X]∧x .

Since our star-products satisfy (3), we can extend them to the completions

K[g∗]∧χ ,K[V ∗]∧0 , K[S]∧χ . So we get new algebra structures on

K[g∗]∧χ [[~]],K[V ∗]∧0 [[~]],K[S]∧χ [[~]]. These algebras have unique maximal ideals,

for instance, the maximal ideal m̃ ⊂ K[g∗]∧χ [[~]] is the inverse image of the maximal

ideal in K[g∗]∧χ . The algebra K[g∗]∧χ is complete in the m̃-adic topology. The similar

claims hold for the other two algebras.

Consider the algebra K[S]∧χ [[~]] ⊗K[[~]] K[V ∗]∧0 [[~]] and let m̃ denote its maximal

ideal corresponding to the point (χ, 0). Note that the algebra is not complete in the

m̃-adic topology. Taking the completion, we get the completed tensor product, which

we denote by K[S]∧χ [[~]]“⊗K[[~]]K[V ∗]∧0 [[~]]. As a vector space, the last algebra is just

K[S × V ∗]∧(χ,0)[[~]].

Finally, note that there is a natural identification ϕ : zg(e)⊕V → g, (ξ, η) 7→ ξ+ η.

The first two assertions of the following Proposition follow from [15], Theorem

3.1.3, and the third follows from [13], Theorem 2.3.1, for semisimple G and from

Remark 2.3.2 for a general reductive group G.

Proposition 2.1. — There is a Q×K×-equivariant isomorphism

Φ~ : K[g∗]∧χ [[~]]→ K[S]∧χ [[~]]“⊗K[[~]]K[V ∗]∧0 [[~]]

of topological K[[~]]-algebras satisfying the following conditions:

1. Φ~(
∑∞
i=0 fi~2i) contains only even powers of ~.
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