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Abstract. — We try to clarify the relations between quiver varieties of type A and

Kraft-Procesi proof of normality of nilpotent conjugacy classes closures.

Résumé (Quelques remarques sur les variétés de carquois de Nakajima, de type A)
Nous essayons de clarifier les relations entre les variétés de carquois de type A et la

preuve par Kraft et Procesi de la normalité des adhérences des classes de conjugaison

de matrices nilpotentes.

1. Introduction

Kraft and Procesi proved in [3] that for any nilpotent n × n matrix A over an

algebraically closed field k of characteristic zero, the closure CA of the conjugacy

class CA of A is normal, Cohen-Macaulay with rational singularities. The main idea

of the proof of this wonderful theorem is as follows: CA is proved to be isomorphic

to the categorical quotient for an affine variety Z of representations of a quiver with

relations: CA ∼= Z//H, where H is a reductive group. Moreover, this Z is proved to be

a reduced irreducible normal complete intersection, and this implies all the claimed

properties of CA as being inherited by the categorical quotients over reductive groups

in general.

Nakajima in [5] and [6] introduced a setup related to the term quiver variety. A

very particular case of that setup, when the underlying quiver is of type A and the

additional vector spaces are of special dimension vector leads to the above variety Z

used by Kraft and Procesi. Nakajima employed this observation in [5] to illustrate

quiver varieties, in particular, he proved a nice theorem ([5, Theorem 7.3]) relating the

quiver variety in this case with the cotangent bundle over a flag variety. The proof is

based on another result ([5, Theorem 7.2]) that he claimed to be proved in [3]. Actu-

ally, that result was proved in [3, Proposition 3.4] only for special dimension vectors,
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not in the generality needed for Theorem 7.3. Unfortunately, this confusion haven’t

been corrected so far and we want to fill this gap, and without any contradiction with

the valuable sense of Nakajima’s result.

First of all, both Theorems 7.2 and 7.3 are true and we give proofs for them. In

addition, we show that Theorem 7.3 is closely related with a result on ∆-filtered

modules of Auslander algebra from [1]. On the other hand, the main part of the

results of [3] (because [3, Proposition 3.4] is only a small part of these) can not be

generalized, in particular, the variety Z can be reducible (see Example 4.3).

Our study does not claim to be a new result. Quite the contrary, we are trying to

present the known results in their uncompromising beauty.

2. Kraft-Procesi setup and Nakajima’s Theorem 7.2.

We present the setup used in [3] keeping the local notation. Consider a sequence

of t vector spaces and linear mappings between them:

(1) U1

A1

�
B1

U2

A2

�
B2

U3 · · ·Ut−1

At−1

�
Bt−1

Ut

Consider moreover the equations as follows:

(2) B1A1 = 0;B2A2 = A1B1;B3A3 = A2B2; · · · ;Bt−1At−1 = At−2Bt−2

and denote by Z the closed subvariety defined by these equations. The equations

can be thought of as ”commutativity” conditions for every i = 2, . . . , t − 1: two

possible compositions of Ui−1 � Ui � Ui+1 yield the same endomorphism of Ui.

The extra condition B1A1 = 0 combined with that commutativity implies (A1B1)2 =

A1(B1A1)B1 = 0. Inductively, we have for i = 2, . . . , t− 1:

(3) (BiAi)
i = (Ai−1Bi−1)i = Ai−1(Bi−1Ai−1)i−1Bi−1 = 0⇒ (AiBi)

i+1 = 0

so all these endomorphisms are nilpotent. Denote dimUi by ni; so we have the

dimension vector (n1, . . . , nt). The variety Z is naturally acted upon by the group

G = GLn1
× · · · × GLnt

and its normal subgroup H = GLn1
× · · · × GLnt−1

. The

above setup is interesting for any dimension vector but each of the texts [3] and [5,

§7] considered those important for their purposes. Nakajima considered (in slightly

different notation) monotone dimension vectors, that is, subject to the condition n1 <

n2 < · · · < nt. One of the statements we feel necessary to clarify is the following (in

our reformulation consitent with given notation):

Theorem 2.1 (Theorem 7.2 from [5]). — Assume (n1, . . . , nt) is monotone. Then the

map (A1, B1, . . . , At−1, Bt−1) → At−1Bt−1 : Z → End(Ut) is the categorical quotient

with respect to H and the image is the conjugacy class closure for a nilpotent matrix.
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Instead of the proof for this Theorem it is stated in [5] that this result is proved

in [3]. This is not true, because in [3] a smaller subset of dimensions was considered

and the most part of the results concerns this subset, though the developed methods

do allow to recover the proof of the above Theorem (see §4).

For the main goal of [3] it was sufficient to consider the dimensions as follows.

Let η = (p1, p2, . . . , pk) be a partition with p1 ≥ p2 ≥ · · · ≥ pk. By η̂ = (p̂1, . . . , p̂m)

denote the dual partition such that p̂i
.
= #{j|pj ≥ i}. In the Young diagram language,

the diagram with rows consisting of p1, p2, . . . , pk boxes, respectively has columns

consisting of p̂1, p̂2, . . . , p̂m boxes, respectively. For example, the dual partition to

η = (5, 3, 3, 1) is η̂ = (4, 3, 3, 1, 1) as shows the Young diagram of η

Now, if η = (p1, p2, . . . , pk) is a partition such that p1 = t set

(4) n1 = p̂t;n2 = p̂t−1 + p̂t; · · · ;nt = p̂1 + p̂2 + · · ·+ p̂t.

So n1, . . . , nt are the volumes of an increasing sequence of Young diagrams such that

the previous diagram is the result of collapsing the first column of the next one. For

example, the above partition yields the dimension vector (1, 2, 5, 8, 12). This way we

define a vector n(η) = (n1, . . . , nt) and the set of all such vectors can be characterized

by the inequalities as follows:

(5) n1 ≤ n2 − n1 ≤ n3 − n2 ≤ · · · ≤ nt − nt−1.

In particular, this is a monotone sequence. Moreover, let C be the Cartan matrix of

type At−1 and set v = (n1, . . . , nt−1), w = (0, . . . , 0, nt). Then the formulae (5) are

equivalent to

(6) w − Cv ∈ Zt−1
+

Remark 2.1. — The condition (6) has a very important sense in Nakajima’s theory.

Namely, by [6, Proposition 10.5] it is equivalent to the setMreg
0 (v, w) being nonempty,

which means that the generic orbit in Z is closed with trivial stabilizer. The most

interesting general Nakajima’s results hold under this condition and in this particular

case are just equivalent to what is proved in [3].

A partition η = (p1, . . . , pk) of t yields a nilpotent conjugacy class Cη of matrices

with Jordan blocks of size p1, . . . , pk, and moreover, a special matrix A ∈ Cη such

that basis vectors of kt correspond to the boxes of Young diagram and A maps the

boxes from the first column to 0 and each of the other boxes to its left neighbour.

We now state a result from [3], which is very close to Theorem 2.1. Actually

our statement is more strong than in [3] but one can easily check that the original

argument works for this statement without any change.
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Proposition 2.2 (Proposition 3.4 from [3]). — 1. The map Θ : Z → End(Ut),

Θ(A1, B1, . . . , At−1, Bt−1) = At−1Bt−1 is the categorical quotient with respect to

H for arbitrary dimension vector (n1, . . . , nt).

2. If (n1, . . . , nt) = n(η), then the image of Θ is equal Cη.

3. Nakajima’s Theorem 7.3

Before stating Nakajima’s result we need some preliminary facts and notion. Let

(n1, . . . , nt) be a monotone dimension vector. Denote by F the variety of partial flags

{0} = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Et−1 ⊆ Et = knt with dimEi = ni for i = 1, . . . , t. The

variety F is projective and homogeneous with respect to the natural action of GLnt ,

F ∼= GLnt
/P , where P is the stabilizer of a selected flag f0, a parabolic subgroup in

GLnt
. Recall that the tangent space Tf0

GLnt
/P is isomorphic to p∗0, where p0 is the

nilradical of the Lie algebra of P .

Consider a closed subset X ⊆ F × End(knt) as follows:

(7) X = {(f,A) ∈ F × End(knt)|AEi ⊆ Ei−1, i = 1, . . . , t}

X is naturally isomorphic to the cotangent bundle T ∗F because the fiber of the

projection p1 : X → F over f0 is f0 × p0.

Let µ be the dual partition to the ordered sequence (n1, n2−n1, . . . , nt−nt−1) (in

particular, if (n1, . . . , nt) = n(η), then µ = η). The following statement is well-known

and can be found, e.g. in [2, Theorem 3.3]:

Proposition 3.1. — We have p2(X) = Cµ.

Now we need to introduce shortly quiver varieties in this particular case. These are

quotients by the action of a group, but two papers, [5] and [6] propose two different

approachs to this notion, a Käler quotient and a quotient in the sense of Geometrical

Invariant Theory, respectively. Though the results we discuss are in [5], we prefer the

approach from [6].

Nakajima considered two quotiens of Z with respect to the action of H. The first,

M0 is just the categorical quotient, M0 = Z//H so the geometrical points of M0

are in 1-to-1 correspondance with the closed H-orbits in Z. On the other hand, one

can consider the semi-stable locus Zss ⊆ Z (actually with respect to a particular

choice of a character of H but we consider just one as in [6]). It is proved in [6]

in general case that Zss consists of stable points, that is, every H-orbit in Zss is

closed in Zss and isomorphic to H. Hence, there is a geometric quotientM = Zss/H

(the construction of the quotient as an algebraic variety is usual for GIT, see [6,

p.522]). In particular, the points ofM are in 1-to-1 correspondance with the H-orbits

in Zss. Moreover, the categorical quotient Z → M0 gives rise to a natural map

π : M → M0. Geometrically, π sends a stable orbit Hz to the unique closed (in Z)

orbit in Hz. Besides, the construction of M implies that π is projective. Finally,

Proposition 2.2 yields a convenient form of π as a map sending the stable orbit of

(A1, B1, . . . , At−1, Bt−1) to At−1Bt−1 ∈ End(Ut).
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