IIC RESOLUTION FOR RY TETRAHEDRAL GROUP

Manfred Lehn \& Christoph Sorger

GEOMETRIC METHODS IN REPRESENTATION THEORY, II

Michel Brion, ed.

A SYMPLECTIC RESOLUTION FOR THE BINARY TETRAHEDRAL GROUP

Manfred Lehn \& Christoph Sorger

Abstract

We describe an explicit symplectic resolution for the quotient singularity arising from the four-dimensional symplectic representation of the binary tetrahedral group.

Résumé (Une résolution symplectique pour le groupe binaire tetrahedral). - Nous décrivons une résolution symplectique explicite de la singularité quotient issue de la représentation symplectique de dimension quatre du groupe binaire tétraédral.

Let G be a finite group with a complex symplectic representation V. The symplectic form σ on V descends to a symplectic form $\bar{\sigma}$ on the open regular part of V / G. A proper morphism $f: Y \rightarrow V / G$ is a symplectic resolution if Y is smooth and if $f^{*} \bar{\sigma}$ extends to a symplectic form on Y. It turns out that symplectic resolutions of quotient singularities are a rare phenomenon. By a theorem of Verbitsky [14], a necessary condition for the existence of a symplectic resolution is that G be generated by symplectic reflections, i.e. by elements whose fix locus on V is a linear subspace of codimension 2. Given an arbitrary complex representation V_{0} of a finite group G, we obtain a symplectic representation on $V_{0} \oplus V_{0}^{*}$, where V_{0}^{*} denotes the contragradient representation of V_{0}. In this case, Verbitsky's theorem specialises to an earlier theorem of Kaledin [8]: For $V_{0} \oplus V_{0}^{*} / G$ to admit a symplectic resolution, the action of G on V_{0} should be generated by complex reflections, in other words, V_{0} / G should be smooth. The complex reflection groups have been classified by Shephard and Todd [13], the symplectic reflection groups by Cohen [3]. The list of Shephard and Todd contains as a sublist the finite Coxeter groups.

The question which of these groups $G \subset \operatorname{Sp}(V)$ admits a symplectic resolution for V / G has been solved for the Coxeter groups by Ginzburg and Kaledin [4] and for arbitrary complex reflection groups most recently by Bellamy [1]. His result is as follows:

2000 Mathematics Subject Classification. - 14B05; 14E15, 13P10.
Key words and phrases. - ???

Theorem 1. - (Bellamy) - If $G \subset \mathrm{GL}\left(V_{0}\right)$ is a finite complex reflection group, then $V_{0} \oplus V_{0}^{*} / G$ admits a symplectic resolution if and only if $\left(G, V_{0}\right)$ belongs to the following cases:

1. $\left(S_{n}, \mathfrak{h}\right)$, where the symmetric group S_{n} acts by permutations on the hyperplane $\mathfrak{h}=\left\{x \in \mathbb{C}^{n} \mid \sum_{i} x_{i}=0\right\}$.
2. $\left((\mathbb{Z} / m)^{n} \rtimes S_{n}, \mathbb{C}^{n}\right)$, the action being given by multiplication with m-th roots of unity and permutations of the coordinates.
3. $\left(T, S_{1}\right)$, where S_{1} denotes a two-dimensional representation of the binary tetrahedral group T (see below).

However, the technique of Ginzburg, Kaledin and Bellamy does not provide resolutions beyond the statement of existence. Case 1 corresponds to Coxeter groups of type A and Case 2 with $m=2$ to Coxeter groups of type B. It is well-known that symplectic resolutions of $\mathfrak{h} \oplus \mathfrak{h}^{*} / S_{n}$ and $\mathbb{C}^{n} \oplus \mathbb{C}^{n} /(\mathbb{Z} / m)^{n} \rtimes S_{n} \cong \operatorname{Sym}^{n}\left(\mathbb{C}^{2} /(\mathbb{Z} / m)\right)$ are given as follows:

For a smooth surface Y the Hilbert scheme $\operatorname{Hilb}^{n}(Y)$ of generalised n-tuples of points on Y provides a crepant resolution $\operatorname{Hilb}^{n}(Y) \rightarrow \operatorname{Sym}^{n}(Y)$. Applied to a minimal resolution of the A_{m-1}-singularity $\mathbb{C}^{2} / G, G \cong \mathbb{Z} / m$, this construction yields a small resolution $\operatorname{Hilb}^{n}\left(\widetilde{\mathbb{C}^{2} / G}\right) \rightarrow \operatorname{Sym}^{n}\left(\widetilde{\mathbb{C}^{2} / G}\right) \rightarrow \operatorname{Sym}^{n}\left(\mathbb{C}^{2} / G\right)$. Similarly, $\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) / S_{n}$ is the fibre over the origin of the barycentric map $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2}$. Thus $\left(\mathfrak{h} \oplus \mathfrak{h}^{*}\right) / S_{n}$ is resolved symplectically by the null-fibre of the morphism $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \rightarrow \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \rightarrow$ \mathbb{C}^{2} 。

It is the purpose of this note to describe an explicit symplectic resolution for the binary tetrahedral group.

1. The binary tetrahedral group

Let $T_{0} \subset \mathrm{SO}(3)$ denote the symmetry group of a regular tetrahedron. The preimage of T_{0} under the standard homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ is the binary tetrahedral group T. As an abstract group, T is the semidirect product of the quaternion group $Q_{8}=\{ \pm 1, \pm I, \pm J, \pm K\}$ and the cyclic group $\mathbb{Z} / 3$. As a subgroup of $\mathrm{SU}(2)$ it is generated by the elements

$$
I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \text { and } \quad \tau=-\frac{1}{2}\left(\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right)
$$

The binary tetrahedral group has 7 irreducible complex representations: A threedimensional one arising from the quotient $T \rightarrow T_{0} \subset \mathrm{SO}_{3}$, three one-dimensional representations \mathbb{C}_{j} arising from the quotient $T \rightarrow \mathbb{Z} / 3$ with τ acting by $e^{2 \pi i j / 3}$, and three two-dimensional representations S_{0}, S_{1} and S_{2}. Here S_{0} denotes the standard representation of T arising from the embedding $T \subset \mathrm{SU}_{2}$. This representation is symplectic, its quotient S_{0} / T being the well-known Klein-DuVal singularity of type E_{6}. The two other representations can be written as $S_{j}=S_{0} \otimes \mathbb{C}_{j}, j=1,2$. They are dual to each other. It is as the subgroup of $\subset \mathrm{GL}\left(S_{1}\right)$ that T appears in the list
of Shephard and Todd under the label "No. 4". The diagonal action of T on $S_{1} \oplus S_{2}$ provides the embedding of T to Sp_{4} that is of interest in our context.

Whereas the action of T on S_{0} is symplectic, the action of T on S_{1} and S_{2} is generated by complex reflections of order 3 . Overall, there are 8 elements of order 3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy classes. To these correspond 4 lines in S_{1} of points with nontrivial isotropy groups. Let $C_{1} \subset S_{1}$ and $C_{2} \subset S_{2}$ denote the union of these lines in each case. Then $C_{1} \times S_{2}$ and $S_{1} \times C_{2}$ are invariant divisors in $S_{1} \oplus S_{2}$. However, the defining equations are invariant only up to a scalar. Consequently, their images W_{1} and W_{2} in the quotient $Z=S_{1} \oplus S_{2} / T$ are Weil divisors but not Cartier. The reduced singular locus $\operatorname{sing}(Z)$ is irreducible and off the origin a transversal A_{2} singularity. It forms one component of the intersection $W_{1} \cap W_{2}$.

For $j=1,2$, let $\alpha_{j}: Z_{j}^{\prime} \rightarrow Z$ denote the blow-up along W_{j}. Next, let W_{j}^{\prime} be the reduced singular of locus Z_{j}^{\prime}, and let $\beta_{j}: Z_{j}^{\prime \prime} \rightarrow Z_{j}^{\prime}$ denote the blow-up along W_{j}^{\prime}.

Theorem 2. - The morphisms $\sigma_{j}=\alpha_{j} \beta_{j}: Z_{j}^{\prime \prime} \rightarrow Z, j=1,2$, are symplectic resolutions.

Proof. - As all data are explicit, the assertion can be checked by brute calculation. To cope with the computational complexity we use the free computer algebra system SINGULAR ${ }^{(1)}$ [5]. It suffices to treat one of the two cases of the theorem. We indicate the basic steps for $j=2$. In order to improve the readability of the formulae we write $q=\sqrt{-3}$.

Let $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ denote the ring of polynomial functions on $S_{1} \oplus S_{2}$. The invariant subring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$ is generated by eight elements, listed in table 1. The kernel I of the corresponding ring homomorphism

$$
\mathbb{C}\left[z_{1}, \ldots, z_{8}\right] \rightarrow \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}
$$

is generated by nine elements, listed in table 2 . The curve C_{2} is given by the semiinvariant $x_{3}^{4}+2 q x_{3}^{2} x_{4}^{2}+x_{4}^{4}$. In order to keep the calculation as simple as possible, the following observation is crucial: Modulo I, the Weil divisor W_{2} can be described by 6 equations, listed in table 3. This leads to a comparatively 'small' embedding $Z_{2}^{\prime} \rightarrow \mathbb{P}_{Z}^{5}$ of Z-varieties. Off the origin, the effect of blowing-up of W_{2} is easy to understand even without any calculation: the action of the quaternion normal subgroup $Q_{8} \subset T$ on $S_{1} \oplus S_{2} \backslash\{0\}$ is free. The action of $\mathbb{Z} / 3=T / Q_{8}$ on $S_{1} \oplus S_{2} / Q_{8}$ produces transversal A_{2}-singularities along a smooth two-dimensional subvariety. Blowing-up along W_{1} or W_{2} is a partial resolution: it introduces a \mathbb{P}^{1} fibre over each singular point, and the total space contains a transversal A_{1}-singularity.

The homogeneous ideal $I_{2}^{\prime} \subset \mathbb{C}\left[z_{1}, \ldots, z_{8}, b_{1}, \ldots, b_{6}\right]$ that describes the subvariety $Z_{2}^{\prime} \subset \mathbb{P}_{Z}^{5}$ is generated by I and 39 additional polynomials. In order to understand the nature of the singularities of Z_{2}^{\prime} we consider the six affine charts $U_{\ell}=\left\{b_{\ell}=1\right\}$. The
(1) A documented SINGULAR file containing all the calculations is available from the authors upon request.

Table 1: generators for the invariant subring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$:

$$
\begin{array}{ll}
z_{1}=x_{1} x_{3}+x_{2} x_{4}, & z_{4}=x_{2} x_{3}^{3}-q x_{1} x_{3}^{2} x_{4}+q x_{2} x_{3} x_{4}^{2}-x_{1} x_{4}^{3}, \\
z_{2}=x_{3}^{4}-2 q x_{3}^{2} x_{4}^{2}+x_{4}^{4}, & z_{5}=x_{2}^{3} x_{3}-q x_{1}^{2} x_{2} x_{3}+q x_{1} x_{2}^{2} x_{4}-x_{1}^{3} x_{4}, \\
z_{3}=x_{1}^{4}+2 q x_{1}^{2} x_{2}^{2}+x_{2}^{4}, & z_{6}=x_{1}^{5} x_{2}-x_{1} x_{2}^{5}, \\
z_{7}=x_{3}^{5} x_{4}-x_{3} x_{4}^{5} & z_{8}=x_{1} x_{2}^{2} x_{3}^{3}-x_{2}^{3} x_{3}^{2} x_{4}-x_{1}^{3} x_{3} x_{4}^{2}+x_{1}^{2} x_{2} x_{4}^{3} .
\end{array}
$$

Table 2: generators for $I=\operatorname{ker}\left(\mathbb{C}\left[z_{1}, \ldots, z_{8}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{4}\right]^{T}\right)$.

$$
\begin{array}{ll}
q z_{1}^{3} z_{5}-z_{1} z_{3} z_{4}-2 z_{2} z_{6}-z_{5} z_{8}, & z_{1} z_{5}^{2}+2 z_{4} z_{6}+z_{3} z_{8} \\
q z_{1}^{3} z_{4}+z_{1} z_{2} z_{5}-2 z_{3} z_{7}-z_{4} z_{8}, & z_{1} z_{4}^{2}-2 z_{5} z_{7}-z_{2} z_{8} \\
-z_{1}^{4}+z_{2} z_{3}-z_{4} z_{5}-3 q z_{1} z_{8}, & q z_{1}^{2} z_{3} z_{5}-2 z_{1}^{3} z_{6}-z_{3}^{2} z_{4}+z_{5}^{3}-6 q z_{6} z_{8} \\
z_{1}^{2} z_{4} z_{5}+q z_{1}^{3} z_{8}+4 z_{6} z_{7}-z_{8}^{2}, & q z_{1}^{2} z_{2} z_{4}-2 z_{1}^{3} z_{7}-z_{4}^{3}+z_{2}^{2} z_{5}-6 q z_{7} z_{8} \\
4 z_{1}^{2} z_{4} z_{5}+q z_{3} z_{4}^{2}-q z_{2} z_{5}^{2}+4 z_{6} z_{7}+8 z_{8}^{2}
\end{array}
$$

Table 3: generators for the ideal of the Weil divisor $W_{2} \subset Z$.

$$
\begin{array}{lll}
b_{1}=z_{3} z_{7}+2 z_{4} z_{8}, & b_{2}=z_{2} z_{4}+2 q z_{1} z_{7}, & b_{3}=z_{2} z_{3}-4 q z_{1} z_{8} \\
b_{4}=z_{2}^{3}+12 q z_{7}^{2}, & b_{5}=z_{1} z_{2}^{2}-6 z_{4} z_{7}, & b_{6}=z_{1}^{2} z_{2}-q z_{4}^{2}
\end{array}
$$

Table 4: generators for the ideal sheaf J of $Z_{2}^{\prime} \subset \mathbb{C}^{7}$ in the third chart:

$$
\begin{array}{ll}
4 z_{1} b_{1}+q z_{3} b_{2}+z_{5} b_{6}, & z_{1} z_{5}+z_{3} b_{1}+q z_{6} b_{6} \\
z_{1}^{2} b_{6}-z_{3} b_{6}^{2}-4 q b_{1}^{2}-3 z_{5} b_{2}, & z_{1}^{2} z_{3}-z_{3}^{2} b_{6}-q z_{5}^{2}-12 z_{6} b_{1} \\
z_{1}^{3}-z_{1} z_{3} b_{6}+q z_{5} b_{1}+3 q z_{6} b_{2} &
\end{array}
$$

result can be summarised like this: The singular locus of Z_{2}^{\prime} is completely contained in $U_{2} \cup U_{3}$, so only these charts are relevant for the discussion of the second blow-up. In fact, the corresponding affine coordinate rings have the following description:

$$
R_{2}=\mathbb{C}\left[z_{1}, b_{3}, b_{4}, b_{5}, b_{6}\right] /\left(b_{5} b_{6}-2 q z_{1}\right)^{2}+b_{4}\left(3 q b_{3}-b_{6}^{3}\right)
$$

is a transversal A_{1}-singularity.

$$
R_{3}=\mathbb{C}\left[z_{1}, z_{3}, z_{5}, z_{6}, b_{1}, b_{2}, b_{6}\right] / J,
$$

where J is generated by five elements, listed in table 4 . Inspection of these generators shows that $\operatorname{Spec}\left(R_{2}\right)$ is isomorphic to the singularity $\left(\mathfrak{h}_{3} \oplus \mathfrak{h}_{3}^{*}\right) / S_{3}$, the symplectic singularity of Coxeter type A_{2} that appears as case 1 in Bellamy's theorem. It is wellknown that blowing up the singular locus yields a small resolution. For arbitrary n, this is a theorem of Haiman [6, Prop. 2.6], in our case it is easier to do it directly. Thus blowing-up the reduced singular locus of Z_{2}^{\prime} produces a smooth resolution $Z_{2}^{\prime \prime} \rightarrow Z$.

It remains to check that the morphism $\alpha_{2}: Z_{2} \rightarrow Z$ is semi-small. For this it suffices to verify that the fibre $E=\left(\alpha_{2}^{-1}(0)\right)_{\text {red }}$ over the origin is two-dimensional and

