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Abstract. — We describe an explicit symplectic resolution for the quotient singularity

arising from the four-dimensional symplectic representation of the binary tetrahedral

group.

Résumé (Une résolution symplectique pour le groupe binaire tetrahedral). — Nous décrivons

une résolution symplectique explicite de la singularité quotient issue de la représen-

tation symplectique de dimension quatre du groupe binaire tétraédral.

LetG be a finite group with a complex symplectic representation V . The symplectic

form σ on V descends to a symplectic form σ̄ on the open regular part of V/G. A

proper morphism f : Y → V/G is a symplectic resolution if Y is smooth and if

f∗σ̄ extends to a symplectic form on Y . It turns out that symplectic resolutions

of quotient singularities are a rare phenomenon. By a theorem of Verbitsky [14], a

necessary condition for the existence of a symplectic resolution is that G be generated

by symplectic reflections, i.e. by elements whose fix locus on V is a linear subspace of

codimension 2. Given an arbitrary complex representation V0 of a finite group G, we

obtain a symplectic representation on V0 ⊕ V ∗0 , where V ∗0 denotes the contragradient

representation of V0. In this case, Verbitsky’s theorem specialises to an earlier theorem

of Kaledin [8]: For V0⊕V ∗0 /G to admit a symplectic resolution, the action of G on V0

should be generated by complex reflections, in other words, V0/G should be smooth.

The complex reflection groups have been classified by Shephard and Todd [13], the

symplectic reflection groups by Cohen [3]. The list of Shephard and Todd contains

as a sublist the finite Coxeter groups.

The question which of these groups G ⊂ Sp(V ) admits a symplectic resolution for

V/G has been solved for the Coxeter groups by Ginzburg and Kaledin [4] and for

arbitrary complex reflection groups most recently by Bellamy [1]. His result is as

follows:
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Theorem 1. — (Bellamy) — If G ⊂ GL(V0) is a finite complex reflection group, then

V0⊕V ∗0 /G admits a symplectic resolution if and only if (G,V0) belongs to the following

cases:

1. (Sn, h), where the symmetric group Sn acts by permutations on the hyperplane

h = {x ∈ Cn |
∑
i xi = 0}.

2. ((Z/m)n o Sn,Cn), the action being given by multiplication with m-th roots of

unity and permutations of the coordinates.

3. (T, S1), where S1 denotes a two-dimensional representation of the binary tetra-

hedral group T (see below).

However, the technique of Ginzburg, Kaledin and Bellamy does not provide reso-

lutions beyond the statement of existence. Case 1 corresponds to Coxeter groups of

type A and Case 2 with m = 2 to Coxeter groups of type B. It is well-known that

symplectic resolutions of h⊕ h∗/Sn and Cn ⊕ Cn/(Z/m)n o Sn ∼= Symn(C2/(Z/m))

are given as follows:

For a smooth surface Y the Hilbert scheme Hilbn(Y ) of generalised n-tuples of

points on Y provides a crepant resolution Hilbn(Y ) → Symn(Y ). Applied to a min-

imal resolution of the Am−1-singularity C2/G, G ∼= Z/m, this construction yields a

small resolution Hilbn(flC2/G)→ Symn(flC2/G)→ Symn(C2/G). Similarly, (h⊕h∗)/Sn
is the fibre over the origin of the barycentric map Symn(C2)→ C2. Thus (h⊕h∗)/Sn
is resolved symplectically by the null-fibre of the morphism Hilbn(C2)→ Symn(C2)→
C2.

It is the purpose of this note to describe an explicit symplectic resolution for the

binary tetrahedral group.

1. The binary tetrahedral group

Let T0 ⊂ SO(3) denote the symmetry group of a regular tetrahedron. The preimage

of T0 under the standard homomorphism SU(2) → SO(3) is the binary tetrahedral

group T . As an abstract group, T is the semidirect product of the quaternion group

Q8 = {±1,±I,±J,±K} and the cyclic group Z/3. As a subgroup of SU(2) it is

generated by the elements

I =

(
i 0

0 −i

)
and τ = −1

2

(
1 + i −1 + i

1 + i 1− i

)
The binary tetrahedral group has 7 irreducible complex representations: A three-

dimensional one arising from the quotient T → T0 ⊂ SO3, three one-dimensional

representations Cj arising from the quotient T → Z/3 with τ acting by e2πij/3, and

three two-dimensional representations S0, S1 and S2. Here S0 denotes the standard

representation of T arising from the embedding T ⊂ SU2. This representation is

symplectic, its quotient S0/T being the well-known Klein-DuVal singularity of type

E6. The two other representations can be written as Sj = S0 ⊗ Cj , j = 1, 2. They

are dual to each other. It is as the subgroup of ⊂ GL(S1) that T appears in the list
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of Shephard and Todd under the label “No. 4”. The diagonal action of T on S1 ⊕ S2

provides the embedding of T to Sp4 that is of interest in our context.

Whereas the action of T on S0 is symplectic, the action of T on S1 and S2 is

generated by complex reflections of order 3. Overall, there are 8 elements of order

3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy classes. To these

correspond 4 lines in S1 of points with nontrivial isotropy groups. Let C1 ⊂ S1 and

C2 ⊂ S2 denote the union of these lines in each case. Then C1 × S2 and S1 × C2 are

invariant divisors in S1⊕S2. However, the defining equations are invariant only up to

a scalar. Consequently, their images W1 and W2 in the quotient Z = S1 ⊕ S2/T are

Weil divisors but not Cartier. The reduced singular locus sing(Z) is irreducible and

off the origin a transversal A2 singularity. It forms one component of the intersection

W1 ∩W2.

For j = 1, 2, let αj : Z ′j → Z denote the blow-up along Wj . Next, let W ′j be the

reduced singular of locus Z ′j , and let βj : Z ′′j → Z ′j denote the blow-up along W ′j .

Theorem 2. — The morphisms σj = αjβj : Z ′′j → Z, j = 1, 2, are symplectic resolu-

tions.

Proof. — As all data are explicit, the assertion can be checked by brute calculation.

To cope with the computational complexity we use the free computer algebra system

singular (1) [5]. It suffices to treat one of the two cases of the theorem. We indicate

the basic steps for j = 2. In order to improve the readability of the formulae we write

q =
√
−3.

Let C[x1, x2, x3, x4] denote the ring of polynomial functions on S1 ⊕ S2. The

invariant subring C[x1, x2, x3, x4]T is generated by eight elements, listed in table 1.

The kernel I of the corresponding ring homomorphism

C[z1, . . . , z8]→ C[x1, x2, x3, x4]T

is generated by nine elements, listed in table 2. The curve C2 is given by the semiin-

variant x4
3 + 2qx2

3x
2
4 + x4

4. In order to keep the calculation as simple as possible, the

following observation is crucial: Modulo I, the Weil divisor W2 can be described by 6

equations, listed in table 3. This leads to a comparatively ’small’ embedding Z ′2 → P5
Z

of Z-varieties. Off the origin, the effect of blowing-up of W2 is easy to understand even

without any calculation: the action of the quaternion normal subgroup Q8 ⊂ T on

S1 ⊕ S2 \ {0} is free. The action of Z/3 = T/Q8 on S1 ⊕ S2/Q8 produces transversal

A2-singularities along a smooth two-dimensional subvariety. Blowing-up along W1 or

W2 is a partial resolution: it introduces a P1 fibre over each singular point, and the

total space contains a transversal A1-singularity.

The homogeneous ideal I ′2 ⊂ C[z1, . . . , z8, b1, . . . , b6] that describes the subvariety

Z ′2 ⊂ P5
Z is generated by I and 39 additional polynomials. In order to understand the

nature of the singularities of Z ′2 we consider the six affine charts U` = {b` = 1}. The

(1) A documented singular file containing all the calculations is available from the authors upon

request.
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Table 1: generators for the invariant subring C[x1, x2, x3, x4]T :

z1 = x1x3 + x2x4, z4 = x2x
3
3 − qx1x

2
3x4 + qx2x3x

2
4 − x1x

3
4,

z2 = x4
3 − 2qx2

3x
2
4 + x4

4, z5 = x3
2x3 − qx2

1x2x3 + qx1x
2
2x4 − x3

1x4,

z3 = x4
1 + 2qx2

1x
2
2 + x4

2, z6 = x5
1x2 − x1x

5
2,

z7 = x5
3x4 − x3x

5
4 z8 = x1x

2
2x

3
3 − x3

2x
2
3x4 − x3

1x3x
2
4 + x2

1x2x
3
4.

Table 2: generators for I = ker(C[z1, . . . , z8]→ C[x1, . . . , x4]T ).

qz3
1z5 − z1z3z4 − 2z2z6 − z5z8, z1z

2
5 + 2z4z6 + z3z8,

qz3
1z4 + z1z2z5 − 2z3z7 − z4z8, z1z

2
4 − 2z5z7 − z2z8,

−z4
1 + z2z3 − z4z5 − 3qz1z8, qz2

1z3z5 − 2z3
1z6 − z2

3z4 + z3
5 − 6qz6z8,

z2
1z4z5 + qz3

1z8 + 4z6z7 − z2
8 , qz2

1z2z4 − 2z3
1z7 − z3

4 + z2
2z5 − 6qz7z8,

4z2
1z4z5 + qz3z

2
4 − qz2z2

5 + 4z6z7 + 8z2
8

Table 3: generators for the ideal of the Weil divisor W2 ⊂ Z.

b1 = z3z7 + 2z4z8, b2 = z2z4 + 2qz1z7, b3 = z2z3 − 4qz1z8,

b4 = z3
2 + 12qz2

7 , b5 = z1z
2
2 − 6z4z7, b6 = z2

1z2 − qz2
4 .

Table 4: generators for the ideal sheaf J of Z ′2 ⊂ C7 in the third chart:

4z1b1 + qz3b2 + z5b6, z1z5 + z3b1 + qz6b6,

z2
1b6 − z3b26 − 4qb21 − 3z5b2, z2

1z3 − z2
3b6 − qz2

5 − 12z6b1,

z3
1 − z1z3b6 + qz5b1 + 3qz6b2

result can be summarised like this: The singular locus of Z ′2 is completely contained

in U2 ∪U3, so only these charts are relevant for the discussion of the second blow-up.

In fact, the corresponding affine coordinate rings have the following description:

R2 = C[z1, b3, b4, b5, b6]/(b5b6 − 2qz1)2 + b4(3qb3 − b36)

is a transversal A1-singularity.

R3 = C[z1, z3, z5, z6, b1, b2, b6]/J,

where J is generated by five elements, listed in table 4. Inspection of these generators

shows that Spec(R2) is isomorphic to the singularity (h3 ⊕ h∗3)/S3, the symplectic

singularity of Coxeter type A2 that appears as case 1 in Bellamy’s theorem. It is well-

known that blowing up the singular locus yields a small resolution. For arbitrary n,

this is a theorem of Haiman [6, Prop. 2.6], in our case it is easier to do it directly. Thus

blowing-up the reduced singular locus of Z ′2 produces a smooth resolution Z ′′2 → Z.

It remains to check that the morphism α2 : Z2 → Z is semi-small. For this it

suffices to verify that the fibre E = (α−1
2 (0))red over the origin is two-dimensional and
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