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A SYMPLECTIC RESOLUTION FOR THE BINARY
TETRAHEDRAL GROUP

by

Manfred Lehn & Christoph Sorger

Abstract. — We describe an explicit symplectic resolution for the quotient singularity
arising from the four-dimensional symplectic representation of the binary tetrahedral
group.

Résumé (Une résolution symplectique pour le groupe binaire tetrahedral). — Nous décrivons
une résolution symplectique explicite de la singularité quotient issue de la représen-
tation symplectique de dimension quatre du groupe binaire tétraédral.

Let G be a finite group with a complex symplectic representation V. The symplectic
form o on V descends to a symplectic form & on the open regular part of V/G. A
proper morphism f : Y — V/G is a symplectic resolution if Y is smooth and if
f*o extends to a symplectic form on Y. It turns out that symplectic resolutions
of quotient singularities are a rare phenomenon. By a theorem of Verbitsky [14], a
necessary condition for the existence of a symplectic resolution is that G be generated
by symplectic reflections, i.e. by elements whose fix locus on V' is a linear subspace of
codimension 2. Given an arbitrary complex representation Vj of a finite group G, we
obtain a symplectic representation-on Vp @ V', where V' denotes the contragradient
representation of V. Inthis case, Verbitsky’s theorem specialises to an earlier theorem
of Kaledin [8]: For V, ® V;"/G to admit a symplectic resolution, the action of G on Vj
should be generated by complex reflections, in other words, Vy/G should be smooth.
The complex reflection groups have been classified by Shephard and Todd [13], the
symplectic reflection groups by Cohen [3]. The list of Shephard and Todd contains
as a sublist the finite Coxeter groups.

The question which of these groups G C Sp(V) admits a symplectic resolution for
V/G has been solved for the Coxeter groups by Ginzburg and Kaledin [4] and for
arbitrary complex reflection groups most recently by Bellamy [1]. His result is as
follows:
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Theorem 1. — (Bellamy) — If G C GL(V}) is a finite complex reflection group, then
Vo® V5 /G admits a symplectic resolution if and only if (G, V) belongs to the following
cases:

1. (Sn,b), where the symmetric group S, acts by permutations on the hyperplane
h={zeC"| Y,z =0}

2. ((Z/m)™ x S,,C™), the action being given by multiplication with m-th roots of
unity and permutations of the coordinates.

3. (T,S1), where S1 denotes a two-dimensional representation of the binary tetra-
hedral group T (see below).

However, the technique of Ginzburg, Kaledin and Bellamy does not provide reso-
lutions beyond the statement of existence. Case 1 corresponds to Coxeter groups of
type A and Case 2 with m = 2 to Coxeter groups of type B. It is well-known that
symplectic resolutions of h & h*/S,, and C* & C"/(Z/m)™ x S,, = Sym"(C2/(Z/m))
are given as follows:

For a smooth surface Y the Hilbert scheme Hilb"(Y) of generalised n-tuples of
points on Y provides a crepant resolution Hilb"(Y) — Sym"(Y). Applied to a min-
imal resolution of the Am 1-singularity C2 / G, G = Z/m, this construction yields a
small resolution H11b"(C2/G) — Sym" (CQ/G) — Sym™(C?/@G). Similarly, (h®h*)/S,
is the fibre over the origin of the barycentric map Sym™(C?) — C2. Thus (h®bh*)/S,
is resolved symplectically by the null-fibre of the morphism Hilb" (C?) — Sym"(C?) —
c2.

It is the purpose of this note to describe an explicit symplectic resolution for the
binary tetrahedral group.

1. The binary tetrahedral group

Let Ty € SO(3) denote the symmetry group of a regular tetrahedron. The preimage
of Ty under the standard homomorphism SU(2) — SO(3) is the binary tetrahedral
group T'. As an abstract group, T"is the semidirect product of the quaternion group

= {£1,+1,4+J,£K} and the cyclic group Z/3. As a subgroup of SU(2) it is
generated by the elements

0 1 ({142 —1+71
e 7 and 7= _»t +1 +1
0 —1 2\1+4 1—4

The binary tetrahedral group has 7 irreducible complex representations: A three-
dimensional one arising from the quotient 7' — Ty C SOgs, three one-dimensional
representations C; arising from the quotient 7' — Z/3 with 7 acting by e2 /3 and
three two-dimensional representations Sy, S; and Sy. Here Sy denotes the standard
representation of T arising from the embedding 7' C SUs,. This representation is
symplectic; its quotient Sy/T being the well-known Klein-DuVal singularity of type
Es. The two other representations can be written as S; = Sy ® C;, j = 1,2. They
are dual to each other. It is as the subgroup of C GL(S;) that T appears in the list
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of Shephard and Todd under the label “No. 4”. The diagonal action of 7" on S; @ So
provides the embedding of T' to Sp, that is of interest in our context.

Whereas the action of T' on Sy is symplectic, the action of 7' on S; and Sy is
generated by complex reflections of order 3. Overall, there are 8 elements of order
3 in T or rather 4 pairs of inverse elements, forming 2 conjugacy classes. To these
correspond 4 lines in S7 of points with nontrivial isotropy groups. Let Cy; C S; and
Cy C S5 denote the union of these lines in each case. Then Cy x Sy and S; x Cy are
invariant divisors in S7 @ S>. However, the defining equations are invariant only up to
a scalar. Consequently, their images W7 and W5 in the quotient Z = Sy @ So/T are
Weil divisors but not Cartier. The reduced singular locus sing(Z) is irreducible and
off the origin a transversal A, singularity. It forms one component of the intersection
Wi N Wa.

For j = 1,2, let a; : Z; — Z denote the blow-up along W;. Next, let W} be the

j
reduced singular of locus Z}, and let 3; : Z — Z’ denote the blow-up along W;.

Theorem 2. — The morphisms o; = o;f; : Z;’ —Z, j = 1,2, are symplectic resolu-
tions.
Proof. — As all data are explicit, the assertion can be checked by brute calculation.

To cope with the computational complexity we use the free computer algebra system
SINGULAR ") [5]. Tt suffices to treat one of the two cases of the theorem. We indicate
the basic steps for 7 = 2. In order to improve the readability of the formulae we write
q=+v-3.

Let C[z1,x2,3,24] denote the ring of polynomial functions on S; @ S3. The
invariant subring C[zy, 2o, 3, z4]7 is generated by eight elements, listed in table 1.
The kernel I of the corresponding ring homomorphism

(C[Zl, . ,28] — C[xl,x27.’1}3,.'174]T

is generated by nine elements, listed in table 2. The curve C; is given by the semiin-
variant 3 + 2qz3z3 + 1. In order to keep the calculation as simple as possible, the
following observation is crucial: Modulo I, the Weil divisor W5 can be described by 6
equations, listed in table 3. This leads to a comparatively ’small’ embedding Z} — P,
of Z-varieties. Off the origin, the effect of blowing-up of W is easy to understand even
without any calculation: the action of the quaternion normal subgroup Qs C T on
S1 @S2\ {0} is free. The action of Z/3 = T/Qs on S1 @ S2/Qs produces transversal
As-singularities along a smooth two-dimensional subvariety. Blowing-up along W; or
W, is a partial resolution: it introduces a P! fibre over each singular point, and the
total space contains a transversal A;-singularity.

The homogeneous ideal I, C Clz1,...,2s,b1,...,bs] that describes the subvariety
Z} C P}, is generated by I and 39 additional polynomials. In order to understand the
nature of the singularities of Z} we consider the six affine charts U, = {by = 1}. The

(1A documented SINGULAR file containing all the calculations is available from the authors upon
request.
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Table 1: generators for the invariant subring Clz1, 22, 23, £4]7
_ _ 3 2 2 3
21 =x1x3 + ToZ4, 24 = T2X3 — qI1T3T4 + qT2T3Ty — T1Ty,
_ .4 2,.2 4 N 2 2 3
2y = X3 — 2qT3T5 + Ty, 25 = THT3 — qTIT2T3 + qT1THT4 — T7T4,

23 = xf + 2q23xd + 15, 26 = dxe — 2173,

7 = $gx4 - 373.2?2 zZg = :L“lx%xg — .T%ZL‘%LIM — 1’?2731‘421 + l‘%.’EQZEZ
Table 2: generators for I = ker(Cl[zy,...,2s] — Clz1,...,z4]T).
qzi”25 — 212324 — 22926 — 2528, zlzg + 22426 + 2328,
quz4 + 212925 — 22327 — 2428, zlzf — 22527 — 2928,
—zjl + 2923 — 2425 — 3q2128, quz3z5 — 2szz6 — z§Z4 + zg — 6qz¢2s,
zfz4z5 + quzs + dzgz7 — zg, qz%zgz4 — 22{’27 — zi’ + 2325 — 6qz7zs,

4222425 + qz323 — qzo2? + 42627 + 823

Table 3: generators for the ideal of the Weil divisor W5 C Z.

by = 2327 + 22428, by = 2224 +2qz127, b3 = 2223 — 4q2123,

by = 25 +12q22, b5 = 2123 — 62427, . bg = 2722 — q7}.

Table 4: generators for the ideal sheaf J of Z, C C7 in the third chart:

421b1 + q23b2 + Z5b6, Z1%5 + Z3b1 + qz6b6,
Z%bﬁ — ng% — 4qb% —3z5bs, z%zg — z§66 — ng — 122z4b1,
23 — 2123b6 + qz5b1 + 3q26b2

result can be summarised like this: The singular locus of Z} is completely contained
in Us U Us, so only these charts are relevant for the discussion of the second blow-up.
In fact, the corresponding affine coordinate rings have the following description:

Ry = Clz1, bs, ba, bs, bs]/ (bsbe — 2g21)° + ba(3gbs — b3)
is a transversal A;-singularity.
R3 = (C[zly 23, 25,26, b17 b?) bﬁ]/J7

where J is generated by five elements, listed in table 4. Inspection of these generators
shows that Spec(R3) is isomorphic to the singularity (hs @ b3)/Ss, the symplectic
singularity of Coxeter type As that appears as case 1 in Bellamy’s theorem. It is well-
known that blowing up the singular locus yields a small resolution. For arbitrary n,
this is a theorem of Haiman [6, Prop. 2.6], in our case it is easier to do it directly. Thus
blowing-up the reduced singular locus of Z) produces a smooth resolution Z§ — Z.
It remains to check that the morphism as : Zo — Z is semi-small. For this it
suffices to verify that the fibre E = (a; ' (0))eq over the origin is two-dimensional and

SEMINAIRES & CONGRES 25



