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Abstract. — The punctual Hilbert scheme has been known since the early days of alge-

braic geometry in EGA style. Indeed it is a very particular case of the Grothendieck’s

Hilbert scheme which classifies the subschemes of projective space. The general

Hilbert scheme is a key object in many geometric constructions, especially in moduli

problems. The punctual Hilbert scheme which classifies the 0-dimensional subschemes

of fixed degree, roughly finite sets of fat points, while being pathological in most set-

tings, enjoys many interesting properties especially in dimensions at most three. Most

interestingly it has been observed in this last decade that the punctual Hilbert scheme,

or one of its relatives, the G-Hilbert scheme of Ito-Nakamura, is a convenient tool

in many hot topics, as singularities of algebraic varieties, e.g McKay correspondence,

enumerative geometry versus Gromov-Witten invariants, combinatorics and symmet-

ric polynomials as in Haiman’s work, geometric representation theory (the subject of

this school) and many others topics.

The goal of these lectures is to give a self-contained and elementary study of the

foundational aspects around the punctual Hilbert scheme, and then to focus on a

selected choice of applications motivated by the subject of the summer school, the

punctual Hilbert scheme of the affine plane, and an equivariant version of the punctual

Hilbert scheme in connection with the A-D-E singularities. As a consequence of our

choice some important aspects are not treated in these notes, mainly the cohomology

theory, or Nakajima’s theory. for which beautiful surveys are already available in the

current litterature [20, 37, 42].

Papers with title something an introduction are often more difficult to read than

Lectures on something. One can hope this paper is an exception. I would like to

thank M. Brion for discussions and his generous help while preparing these notes.
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1. Preliminary tools

The prototype of problems we are interested in is to describe in some sense the set

of ideals of fixed codimension n in the polynomial ring in r variables k[X1, . . . , Xr]

over a field k assumed algebraically closed to simplify.

In the one variable case, k[X] being a principal ideal domain, an ideal I with

dim k[X]/I = n is of the form I = (P (X)) with P monic and degP = n. These

ideals are then parameterized by n parameters, the coefficients of P . In this case the

punctual n-Hilbert scheme is an affine space Ank . In a different direction, basic linear

algebra tells us there is a precise relationship between on one hand the structure of the

algebra A = k[X]/(P ) and on the other hand properties of the linear map F 7→ XF

from A to A, summarized as follows

P (X) A

without multiple factor semi-simple

One root ∈ k with multiplicity > 1 local, nilpotent

non zero discriminant separable

One of our main goals in these lectures is to extend such a relationship to more

general algebras than polynomials in one variable. One of our main theorems, in the

two variables case, states that the set of all ideals with codimension n has a natural

structure of a smooth algebraic variety of dimension 2n. So to describe an ideal

of codimension n in the polynomial ring k[X,Y ], we need exactly 2n parameters.

Moreover the subset of ideals I with k[X,Y ]/I semi-simple is open and dense. The

situation dramatically changes if the number of indeterminates is 3 or more. In any

case the punctual Hilbert scheme appears to be a very amazing object.

Likewise, if A is a k-algebra (commutative throughout these notes, not necessarily

of finite dimension as k-vector space) we can ask about the structure of the set of

ideals of A. We shall see in case the dimension of A is finite, that the set of ideals

I ⊂ A with dimA/I = n is a projective variety, but infortunately in general, a very

complicated one.

Throughout this text we fix an arbitrary base field k, not necessarily algebraically

closed. In some cases however it will be convenient to assume k = k, and sometimes

the assumption of characteristic zero will be necessary. So in a first lecture the reader

may assume k = k is a field of characteristic zero.

In this set of lectures, a scheme, or variety, will be mostly a k-scheme, that is

a finite type scheme over k. Let us denote Schk the category of k-schemes, and

correspondingly Affk the subcategory of affine k-schemes. One knows that Affk is

the category opposite to the category Algk of commutative k-algebras of finite type.

More generally Sch (resp. Aff) stands for the category of (locally) noetherian schemes

(resp. the category of affine noetherian schemes). If X is a scheme, AffX denotes the
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category of schemes over X, i.e. of schemes together with a morphism to X. For any

R ∈ Aff , SpecR stands for the spectrum of A, viewed as usual as a scheme. When

R = k[X1, . . . , Xn]/(F1, . . . , Fm) and k = k, then SpecR ∈ Affk can be thought of

as the set {x ∈ kn, F1(x) = · · · = Fm(x) = 0} equipped with the ring of functions R.

If X is a scheme, OX stands for the sheaf of regular functions on open subsets of X.

The stalk of OX at a point x will be denoted OX,x or Ox if X is fixed. By a point

we always mean a closed point.

By an OX -module (resp. coherent module) we shall mean a quasi-coherent (resp.

coherent) sheaf ofOX -modules [31]. Finally a vector bundle, is a coherentOX -module

which is locally free of rank n, i.e. at all x ∈ X the stalk is a free OX,x- module of

rank n. If X = SpecA the category of OX -modules is equivalent to the category of

A-modules. A locally free module of rank n is a projective module of constant rank n.

We want to point out that the concept of flatness is essential to handle correctly

families of objects in algebra or algebraic geometry, for us families of 0-dimensional

subschemes, or ideals. We refer to [14], or [40] for the first definitions, and basic

results.

Punctual Hilbert schemes will be obtained by glueing together affine schemes. This

explains why the first section starts with some comments about this glueing process.

Another basic operation that will be used in the sequel is the quotient of a scheme by

a finite group action. This operation will be studied in detail in section 1.4.

1.1. Schemes versus representable functors

1.1.1. Glueing affine schemes. — One lesson of algebraic geometry in EGA style is

that it is often better to think of a scheme X ∈ Sch as a contravariant functor, the

so-called functor of points

(1.1) X : Sch→ Ens (or, Aff → Ens)

where X(S) = HomSch(S,X). Essentially all the information about the scheme X

can be read off the functor of points. It doesn’t matter to choose either Sch or Aff ,

indeed to reconstruct X from its functor of points, it is sufficient to know X on the

subcategory Aff . In this functorial setting a morphism f : Y → X can be thought of

as a section f ∈ X(Y ) or using Yoneda’s lemma as a functorial morphism Y → X. In

the sequel we shall use the same letter to denote a scheme and its associated functor.

The functorial view-point as advocated before suggests that to construct a scheme,

one has to identify first its functor of points X , and then try to show that this functor

is indeed the functors of points of a scheme. This last part which amounts to check

X is representable, is in general not totally obvious. We must list the conditions

about the functor X = X expressing that X is the glueing of affine pieces. The first

condition comes from restricting X to the category OpenS of open sets U ⊂ S ∈ Sch,

the morphisms being the inclusions U ⊂ V . The local character of morphisms implies

that X : OpenS → Ens is not only a presheaf but a Zariski sheaf. We say ”Zariski”

to keep in mind that the topology used to define the sheaf property is the Zariski
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topology. In other words if S = ∪iUi is an open cover of S ∈ Aff , the following

diagram with obvious arrows is exact

(1.2) hX(S) // ∏
i hX(Ui)

//
//
∏
i,j hX(Ui ∩ Uj)

Let X be a Zariski sheaf on Aff . We say that X is representable if for some scheme X

we have an isomorphism ξ : X
∼→ X . As said before the Yoneda lemma asserts that

such a morphism is determined by the single object ξ(1X) ∈ X (X). It is convenient

to identify ξ with this object and write ξ : X → X . In the same way let F : X → Y
be a morphism. One says that F is representable if for all ξ : S → Y the fiber product

X ×Y S, which is a sheaf, is representable.

If this is the case, F is said to be an open immersion (resp. closed immersion, a

surjection) if for all ξ as above the projection X ×Y S → S is an open immersion

(resp. closed immersion, surjection). The following is the most näıve way to try to

represent a functor, but it is sufficient for what follows.

Proposition 1.1. — A Zariski sheaf X is representable, i.e a scheme X, if and only if:

there exist a family morphisms ui : Ui → X such that the following conditions are

satisfied

i) for any i, ui : Ui → X is an open immersion, in particular
∐
i Ui → X is

representable

ii) u : U :=
∐
i Ui → X is surjective

iii) Finally X is separated (so really a scheme), if and only if the graph of the

equivalence relation U ×X U ↪→ U × U is a closed immersion.

Proof. — First perform the fiber product

Ui
ui // X

Ui ×X Uj

vi

OO

vj // Uj

uj

OO

so that condition ii) says Ui ×X Uj is a scheme. Furthermore the arrows vi, vj are

both open immersions. Let us denote Ui,j ⊂ Ui and Uj,i ⊂ Uj the corresponding open

sets. The isomorphism Ui ×X Uj
∼−→ Ui,j together with the corresponding one with

Uji, yields an isomorphism θj,i, viz.

(1.3) Ui ×X Uj
∼

zz

∼

$$
Ui,j

θj,i

∼
// Uj,i

The associativity of the fiber product quickly yields the following cocycle condition

(1.4) θk,j |Uj,i∩Uj,kθj,i|Ui,j∩Ui,k = θk,i|Uk,j∩Uk,i , θi,jθj,i = 1Ui,j
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