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Abstract. — These notes give an introduction to the theory of representations of quiv-

ers, in its algebraic and geometric aspects. The main result is Gabriel’s theorem that

characterizes quivers having only finitely many isomorphism classes of representations

in any prescribed dimension.

Résumé. — Ces notes donnent une introduction à la théorie des représentations des

carquois, sous ses aspects algébrique et géométrique. Le résultat principal est le théo-

rème de Gabriel, qui caractérise les carquois dont les représentations de dimension

donnée (arbitraire) forment un nombre fini de classes d’isomorphisme.

Introduction

Quivers are very simple mathematical objects: finite directed graphs. A represen-

tation of a quiver assigns a vector space to each vertex, and a linear map to each

arrow. Quiver representations were originally introduced to treat problems of linear

algebra, for example, the classification of tuples of subspaces of a prescribed vector

space. But it soon turned out that quivers and their representations play an impor-

tant role in representation theory of finite-dimensional algebras; they also occur in

less expected domains of mathematics including Kac-Moody Lie algebras, quantum

groups, Coxeter groups, and geometric invariant theory.

These notes present some fundamental results and examples of quiver representa-

tions, in their algebraic and geometric aspects. Our main goal is to give an account

of a theorem of Gabriel characterizing quivers of finite orbit type, that is, having

only finitely many isomorphism classes of representations in any prescribed dimen-

sion: such quivers are exactly the disjoint unions of Dynkin diagrams of types An,

Dn, E6, E7, E8, equipped with arbitrary orientations. Moreover, the isomorphism
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classes of indecomposable representations correspond bijectively to the positive roots

of the associated root system.

This beautiful result has many applications to problems of linear algebra. For

example, when applied to an appropriate quiver of type D4, it yields a classification

of triples of subspaces of a prescribed vector space, by finitely many combinatorial

invariants. The corresponding classification for quadruples of subspaces involves one-

parameter families (the so-called tame case); for r-tuples with r ≥ 5, one obtains

families depending on an arbitrary number of parameters (the wild case).

Gabriel’s theorem holds over an arbitrary field; in these notes, we only consider

algebraically closed fields, in order to keep the prerequisites at a minimum. Section

1 is devoted to the algebraic aspects of quiver representations; it requires very little

background. The geometric aspects are considered in Section 2, where familiarity

with some affine algebraic geometry is assumed. Section 3, on representations of

finitely generated algebras, is a bit more advanced, as it uses (and illustrates) basic

notions of affine schemes. The reader will find more detailed outlines, prerequisites,

and suggestions for further reading, at the beginning of each section.

Many important developments of quiver representations fall beyond the limited

scope of these notes; among them, we mention Kac’s far-reaching generalization of

Gabriel’s theorem (exposed in [11]), and the construction and study of moduli spaces

(surveyed in the notes of Ginzburg, see also [15]).

Conventions. — Throughout these notes, we consider vector spaces, linear maps, al-

gebras, over a fixed field k, assumed to be algebraically closed. All algebras are

assumed to be associative, with unit; modules are understood to be left modules,

unless otherwise stated.

1. Quiver representations: the algebraic approach

In this section, we present fundamental notions and results on representations of

quivers and of finite-dimensional algebras.

Basic definitions concerning quivers and their representations are formulated in

Subsection 1.1, and illustrated on three classes of examples. In particular, we de-

fine quivers of finite orbit type, and state their characterization in terms of Dynkin

diagrams (Gabriel’s theorem).

In Subsection 1.2, we define the quiver algebra, and identify its representations

with those of the quiver. We also briefly consider quivers with relations.

The classes of simple, indecomposable, and projective representations are discussed

in Subsection 1.3, in the general setting of representations of algebras. We illustrate

these notions with results and examples from quiver algebras.

Subsection 1.4 is devoted to the standard resolutions of quiver representations,

with applications to extensions and to the Euler and Tits forms.
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The prerequisites are quite modest: basic material on rings and modules in Sub-

sections 1.1-1.3; some homological algebra (projective resolutions, Ext groups, exten-

sions) in Subsection 1.4.

We generally provide complete proofs, with the exception of some classical results

for which we refer to [3]. Thereby, we make only the first steps in the representation

theory of quivers and finite-dimensional algebras. The reader will find more complete

expositions in the books [1, 2, 3] and in the notes [5]; the article [6] gives a nice

overview of the subject.

1.1. Basic definitions and examples

Definition 1.1.1. — A quiver is a finite directed graph, possibly with multiple

arrows and loops. More specifically, a quiver is a quadruple

Q = (Q0, Q1, s, t),

where Q0, Q1 are finite sets (the set of vertices, resp. arrows) and

s, t : Q1 −→ Q0

are maps assigning to each arrow its source, resp. target.

We shall denote the vertices by letters i, j, . . . An arrow with source i and target j

will be denoted by α : i→ j, or by i
α−→j when depicting the quiver.

For example, the quiver with vertices i, j and arrows α : i → j and β1, β2 : j → j

is depicted as follows:

i
α // j

β1

��

β2

XX

Definition 1.1.2. — A representation M of a quiver Q consists of a family of

vector spaces Vi indexed by the vertices i ∈ Q0, together with a family of linear maps

fα : Vs(α) → Vt(α) indexed by the arrows α ∈ Q1.

For example, a representation of the preceding quiver is just a diagram

V
f // W

g1

��

g2

YY

where V , W are vector spaces, and f, g1, g2 are linear maps.
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Definition 1.1.3. — Given two representations M =
(
(Vi)i∈Q0 , (fα)α∈Q1

)
, N =

(Wi, gα) of a quiver Q, a morphism u : M → N is a family of linear maps (ui : Vi →
Wi)i∈Q0

such that the diagram

Vs(α)
fα−−−−→ Vt(α)

us(α)

y ut(α)

y
Ws(α)

gα−−−−→ Wt(α)

commutes for any α ∈ Q1.

For any two morphisms u : M → N and v : N → P , the family of compositions

(viui)i∈Q0
is a morphism vu : M → P . This defines the composition of morphisms,

which is clearly associative and has identity elements idM := (idVi)i∈Q0 . So we may

consider the category of representations of Q, that we denote by Rep(Q).

Given two representations M , N as above, the set of all morphisms (of represen-

tations) from M to N is a subspace of
∏
i∈Q0

Hom(Vi,Wi); we denote that subspace

by HomQ(M,N). If M = N , then

EndQ(M) := HomQ(M,M)

is a subalgebra of the product algebra
∏
i∈Q0

End(Vi).

Clearly, the composition of morphisms is bilinear; also, we may define direct sums

and exact sequences of representations in an obvious way. In fact, one may check

that Rep(Q) is a k-linear abelian category ; this will also follow from the equivalence

of Rep(Q) with the category of modules over the quiver algebra kQ, see Proposition

1.2.2 below.

Definition 1.1.4. — A representation M = (Vi, fα) of Q is finite-dimensional if

so are all the vector spaces Vi. Under that assumption, the family

dimM := (dimVi)i∈Q0

is the dimension vector of M ; it lies in the additive group ZQ0 consisting of all tuples

of integers n = (ni)i∈Q0 .

We denote by (εi)i∈Q0
the canonical basis of ZQ0 , so that n =

∑
i∈Q0

ni εi.

Note that every exact sequence of finite-dimensional representations

0 −→M ′ −→M −→M ′′ −→ 0

satisfies

dimM = dimM ′ + dimM ′′.

Also, any two isomorphic finite-dimensional representations have the same dimen-

sion vector. A central problem of quiver theory is to describe the isomorphism classes

of finite-dimensional representations of a prescribed quiver, having a prescribed di-

mension vector.
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