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Séminaires & Congrès

24, 2010, p. 143–197

LECTURES ON NAKAJIMA’S QUIVER VARIETIES

by

Victor Ginzburg

Abstract. — In these lectures we define Nakajima quiver varieties, discuss their basic

properties, and explain applications to the representation theory of Kac-Moody Lie

algebras. We follow the original texts by Nakajima, with minor improvements. We

provide some background concerning the notion of stability, GIT, and algebraic sym-

plectic geometry. We also briefly discuss a few closely related topics, eg, the McKay

correspondence.

Résumé (Notes sur les variétés de carquois de Nakajima). — Dans ces notes, nous défi-

nissons les variétés de carquois de Nakajima, nous discutons leurs propriétés fonda-

mentales, et nous expliquons leurs applications à la théorie des représentations des

algèbres de Lie de Kac-Moody. Nous suivons les textes originaux de Nakajima, avec

de petites améliorations. Nous présentons des rappels sur la notion de stabilité, la

théorie géométrique des invariants, et la géométrie algébrique symplectique. Nous

abordons aussi quelques sujets voisins, comme la correspondance de McKay.

1. Outline

1.1. Introduction. — Nakajima’s quiver varieties are certain smooth (not necessarily

affine) complex algebraic varieties associated with quivers. These varieties have been

used by Nakajima to give a geometric construction of universal enveloping algebras

of Kac-Moody Lie algebras (as well as a construction of quantized enveloping alge-

bras for affine Lie algebras) and of all irreducible integrable (e.g., finite dimensional)

representations of those algebras.

A connection between quiver representations and Kac-Moody Lie algebras has been

first discovered by C. Ringel around 1990. Ringel produced a construction of Uq(n),

the positive part of the quantized enveloping algebra Uq(g) of a Kac-Moody Lie algebra

g, in terms of a Hall algebra associated with an appropriate quiver, cf. [49] for an

exposition. Shortly afterwards, G. Lusztig combined Ringel’s ideas with the powerful
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technique of perverse sheaves to construct a canonical basis of Uq(n), see [31, 32],

and also [48].

The main advantage of Nakajima’s approach (as opposed to the earlier one by

Ringel and Lusztig) is that it yields a geometric construction of the whole algebra

U(g) rather than its positive part. At the same time, it also provides a geometric

construction of simple integrable U(g)-modules. Nakajima’s approach also yields a

similar construction of the algebra Uq(Lg) and its simple integrable representations,

where Lg denotes the loop Lie algebra associated to g. (1)

There are several steps involved in the definition of Nakajima’s quiver varieties.

Given a quiver Q, one associates to it three other quivers, Q♥, Q, and Q♥, respec-

tively. In terms of these quivers, various steps of the construction of Nakajima varieties

may be illustrated schematically as follows

Framed representation

variety RepQ♥

&&

RepQ

<<

""

Nakajima varietyMλ,θ(v,w) :

Hamiltonian reduction of

RepQ♥ = T ∗(RepQ♥),

(= cotangent bundle of framed

representation variety of Q)

Hamiltonian reduction

of RepQ = T ∗(RepQ)

88

1.2. Nakajima’s varieties and symplectic algebraic geometry. — Nakajima’s varieties

also provide an important large class of examples of algebraic symplectic manifolds

with extremely nice properties and rich structure, interesting in their own right. To

explain this, it is instructive to consider a more general setting as follows.

Let X be a (possibly singular) affine variety equipped with an algebraic Poisson

structure. In algebraic terms, this means that C[X], the coordinate ring of X, is

(1) Note however that, unlike the Ringel-Lusztig construction, the approach used by Nakajima does

not provide a construction of the quantized enveloping algebra Uq(g) of the Lie algebra g itself. A

similar situation holds in the case of Hecke algebras, where the affine Hecke algebra has a geometric

interpretation in terms of equivariant K-theory, see [5, 25], while the Hecke algebra of a finite Weyl

group does not seem to have such an interpretation.
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equipped with a Poisson bracket {−,−}, that is, with a Lie bracket satisfying the

Leibniz identity.

Recall that any smooth symplectic algebraic manifold carries a natural Poisson

structure.

Definition 1.2.1. — Let X be an irreducible affine normal Poisson variety. A resolu-

tion of singularities π : ‹X → X is called a symplectic resolution of X provided ‹X is a

smooth complex algebraic symplectic manifold (with algebraic symplectic 2-form) such

that the pull-back morphism π∗ : C[X]→ Γ(‹X,O
X̃

) is a Poisson algebra morphism.

Below, we will be interested in the case where the varietyX is equipped, in addition,

with a C×-action that rescales the Poisson bracket and contracts X to a (unique)

fixed point o ∈ X. Equivalently, this means that the coordinate ring of X is equipped

with a nonnegative grading C[X] =
⊕

k∈Z Ck[X] such that Ck[X] = 0 (∀k < 0), and

C0[X] = C and, in addition, there exists a (fixed) positive integer m > 0, such that

one has

{Ci[X],Cj [X]} ⊂ Ci+j−m[X], ∀i, j ≥ 0.

In this situation, given a symplectic resolution π : ‹X → X, we call π−1(o), the

fiber of π over the C×-fixed point o ∈ X, the central fiber.

Symplectic resolutions of a Poisson variety with a contracting C×-action as above

enjoy a number of very favorable properties:

1. The map π : ‹X → X is automatically semismall in the sense of Goresky-

MacPherson, i.e. one has dim(‹X ×X ‹X) = dimX, cf. [22].

2. We have a Poisson algebra isomorphism π∗ : C[X] ∼→Γ(‹X,O
X̃

), moreover,

Hi(‹X,O
X̃

) = 0 for all i > 0. The C×-action on X admits a canonical lift

to an algebraic C×-action on ‹X, see [22].

3. The Poisson variety X is a union of finitely many symplectic leaves X = tXα,

[23], and each symplectic leaf Xα is a locally closed smooth algebraic subvariety

of X, [3].

4. For any x ∈ X, each rational homology group H q(π−1(x),Q) is generated by

the fundamental classes of algebraic cycles, see [24].

In particular, we have Hodd(π−1(x),Q) = 0 and, for any k ≥ 0, the coho-

mology group H2k(π−1(x),C) has a pure Hodge structure of type (k, k), cf.

[10].
5. Each fiber of π, equipped with reduced scheme structure, is an isotropic subva-

riety of ‹X. The C×-action provides a homotopy retraction of ‹X to the central

fiber π−1(o); in particular, we have H
q
(‹X,C) ∼= H

q
(π−1(o),C).

The set ‹X ×X ‹X that appears in (i) may have several irreducible components

and the semismallness property says that the dimension of any such component is

≤ dimX; in particular, the diagonal X ⊂ ‹X×X ‹X is one such component of maximal

dimension. The semismallness statement in (i) can be deduced from (v), using some

elementary algebraic geometry, see [12] for a proof.
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Let K(Z) denote the Grothendieck group of the category of coherent sheaves on

a scheme Z. We say that ‘the scheme Z has a decomposable diagonal in K-theory’ if

there exist algebraic vector bundles Ei, Fi, i = 1, . . . , r, on Z, such that, for the class

[O∆] ∈ K(Z × Z) of the structure sheaf of the diagonal Z ⊂ Z × Z, an equation

(1.2.2) [O∆] =
n∑
i=1

(−1)i · [Ei � Fi] holds in K(Z × Z).

Essential parts of properties (ii) and (iv) above are based on the following theorem,

to be proved in section 5.5 below.

Theorem 1.2.3. — Let π : ‹X → X be a symplectic resolution with a contracting

C×-action, as above. Then, one has

(1) Hi(‹X,O
X̃

) = 0 for all i > 0.

(2) For any x ∈ X, the fiber Xx is an isotropic subvariety of ‹X.

(3) The variety ‹X has a decomposable diagonal in K-theory.

Part (1) of the theorem is a special case of a well known result of Grauert-

Riemenschnider [20]; the main idea of the proof of part (2) is due to Wiezerba [53]

(extended and completed by Namikawa [46]); part (3) of the theorem was proved by

Kaledin [24].

Applying the Chern character map Q ⊗Z K(‹X × ‹X) → H∗(‹X × ‹X,Q) to equa-

tion (1.2.2), one can deduce that the groups H q(‹X,Q) are spanned by the Poincaré

duals of the fundamental classes of algebraic cycles. This, combined with property

(v) of symplectic resolutions, can be then used to prove property (iv) of symplectic

resolutions in the special case of the central fiber.

1.3. — We discuss now several especially important examples of symplectic resolu-

tions.

Example 1.3.1 (Slodowy slices). — Let g be a complex semisimple Lie algebra and

〈e, h, f〉 ⊂ g an sl2-triple for a nilpotent element e ∈ g. Write zf for the centralizer of

f in g, and N for the nilcone, the subvariety of all nilpotent elements of g. Slodowy

has shown that the intersection Se := N ∩ (e+ zf ) is reduced, normal, and that there

is a C×-action on Se that contracts Se to e, cf. eg. [5], §3.7 for an exposition.

The variety Se is called the Slodowy slice for e (the variety Se has been known
already to Harish-Chandra; it was studied in detail and extensively used by P. Slodowy

[51]).

Identify g with g∗ by means of the Killing form, and view Se as a subvariety in

g∗. Then, the standard Kirillov-Kostant Poisson structure on g∗ induces a Poisson

structure on Se. The symplectic leaves in Se are obtained by intersecting e+ zf with

the various nilpotent conjugacy classes in g.

Let B denote the flag variety for g, that is, the variety of all Borel subalgebras

in g, and let T ∗B be the cotangent bundle on B. There is a standard resolution of
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