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Abstract. — The n! theorem asserts the existence of an exotic Sn-equivariant vector

bundle on the Hilbert scheme of n-points on the plane. Striking consequences of

this include the positivity of Macdonald polynomials of type A, a generalised McKay

correspondence for nth symmetric product of the plane, and a description of the ring

of diagonal coinvariants of Sn. We explain the origin of this theorem, outline its proof

by Haiman and its consequences, and then survey some related open problems and

generalisations.

Résumé (Travaux de Haiman sur le théorème n! et au-delà). — Le théorème n! établit l’exis-

tence d’un fibré vectoriel Sn-équivariant exotique sur le schéma de Hilbert de n points

du plan. Quelques-unes des conséquences remarquables sont la positivité des poly-

nômes de Macdonald de type A, une correspondance de McKay généralisée pour le

nième produit symétrique du plan, et une description de l’anneau des coinvariants

diagonaux de Sn. Nous expliquons l’origine de ce théorème; décrivons la preuve de

Haiman et ses conséquences, et enfin exposons quelques problèmes ouverts liés et

généralisations.

Introduction

In the late 1980’s Macdonald introduced some remarkable symmetric functions

which now bear his name. They depend on two parameters, t and q, and under

various specialisations recover well-known symmetric functions that we have grown

to love, including Hall-Littlewood functions, Jack functions, monomial symmetric

functions, Schur functions. Based on empirical evidence, Macdonald conjectured sev-

eral fundamental and non-obvious properties, including that when expressed in the

2000 Mathematics Subject Classification. — ???

Key words and phrases. — Representation theory, symmetric functions, tableau and representations of

symmetric group, moduli spaces.

I thank Michel Brion for the opportunity to give these lectures in Grenoble, and the participants of

the summer school for their comments.
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Schur basis, the transition functions for his symmetric functions actually belong to

N[q±1, t±1]. This is called the Macdonald positivity conjecture. Such a result has pre-

decessors for some of the above symmetric functions in fewer parameters, and is of

interest because it suggests something is being counted, and even being counted with

respect to a bigrading (to account for the t and q).

It is now known what is being counted (or better to say, we know one thing that

is being counted by the Macdonald functions): the Macdonald functions count some

bigraded copies of the regular representation of the symmetric group. But where do

such representations come from? The symmetric group Sn acts naturally on a set

of commuting variables x1, . . . , xn, but such an action will only produce a grading

(and indeed had been used in the study of Hall-Littlewood functions). To get the

bigrading Garsia and Haiman introduced a second set of variables y1, . . . , yn and then

proceeded to seek candidates for associated spaces that might produce the regular

representation. They found some very natural spaces that, in low degree, did exactly

what was required; they conjectured that in general these would produce the required

realisation of Macdonald polynomials. Since this conjecture predicted that a space of

polynomials (in 2n variables) carried the regular representation of Sn, it was known

as the n! conjecture. This conjecture became rather famous: it was easy to state,

and attractive since it generalised many celebrated results from symmetric function

theory, representation theory and geometry. On the other hand, having two sets

of variables seemed to make things much more difficult. However, what made the

conjecture really interesting was that thanks to Haiman and Procesi, it introduced a

new object to the field, namely Hilbn C2, and consequently many new structures.

After a long battle, Haiman succeeded to confirm the n! conjecture. He showed

that bigraded Sn-equivariant components of special fibres of an exotic bundle on

Hilbn C2—called the Procesi bundle—are being counted by Macdonald’s polynomials.

His work is a mixture of combinatorics, representation theory, algebraic geometry

and homological algebra. The conjecture has inspired and fed into many other recent

developments in algebra, combinatorics and geometry. These include the discovery

of symplectic reflection algebras by Etingof-Ginzburg, the homological symplectic

McKay correspondence of Bezrukavnikov-Kaledin, new combinatorial statistics for

partitions attached to Dyck paths introduced by Haglund, Haiman, Loehr, Warrington

and others.

In these lectures we will outline the whole story, but at a rather general level.

There are already several excellent expository articles written on this topic by Haiman

and available on his homepage. They contain varying levels of detail, but serve as

wonderful guides to his two main papers on these topics, [12] and [13].

The search for further understanding of the spaces described by Macdonald poly-

nomials goes on; exciting progress is mentioned towards the end of these lectures.
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Lecture 1

The best reference for much of the content in this lecture is the book [17].

1.1. Symmetric functions and the Frobenius map. — Recall that a sequence of integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0) is a partition of |λ| =
∑
λi, written λ ` |λ|. We

write `(λ) = r and set n(λ) =
∑
i(i− 1)λi. We let λ′ denote the transpose of λ. The

dominance ordering on partitions is defined by

λ ≤ µ if and only if λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for each i > 0.

Note that λ ≤ µ if and only if λ′ ≥ µ′.

We identify a partition λ with its Young diagram λ = {(p, q) ∈ N×N : p < λq+1}.
For example λ = (5, 4, 2, 2, 2) gives the following partitions of 15

λ ↔ λ′ ↔ .

Here λ′ > λ.

Let Λ be the ring of symmetric functions, i.e.

Λ =
⊕
k≥0

lim
←

Q[z1, . . . , zn]Snk .

These are functions of bounded degree, but in infinitely many variables z =

(z1, z2, . . . ). Later, we will extend scalars in Λ from Q to either Q(t) or Q(q, t). We

will write Λt or Λq,t respectively.

There are several natural bases for Λ, all indexed by partitions.

– Power pλ = pλ1pλ2 · · · pλr where pt =
∑
i≥1 z

t
i .

– Monomial mλ =
∑
α permutation of λ z

α where if α = (αi)i≥1 then zα =
∏
i≥1 z

αi
i .

– Complete hλ = hλ1
hλ2
· · ·hλr where ht =

∑
|µ|=tmµ.

– Schur sλ = det(z
λj+n−j
i )/ det(zn−ji ).

The last three bases are actually integral, meaning that they form bases for the ring

of symmetric functions over Z.

There is an inner product 〈−,−〉 on Λ, preserving degree. It is characterised by
any of the following:

〈sλ, sµ〉 = δλ,µ

〈pλ, pµ〉 = δλ,µzλ

〈hλ,mµ〉 = δλ,µ.

Here zλ =
∏
i≥1 i

mimi! where λ = (1m1 , 2m2 , . . . ).

A good reason to care about symmetric functions is the following isometry of alge-

bras, F , called the Frobenius map. To define it let Rep(Sn) denote the Grothendieck
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group of complex representations of Sn. Then F :
⊕

n≥0 Rep(Sn)⊗Z Q −→ Λ where

[A] ∈ Rep(Sn) is sent to

FA(z) :=
1

n!

∑
w∈Sn

χA(w)pτ (w)(z)

where τ (w) is the partition describing the cycle type of w ∈ Sn. On the left-hand-side

we have an inner product given by the inner product on characters; multiplication is

induced from

[A] ? [B] = [Ind
Sn+m

Sn×Sm(A�×B)]

for [A] ∈ Rep(Sn), [B] ∈ Rep(Sm). Here Ind denotes the induction functor, which for

H ≤ G is defined on representations of H by IndGH(M) = CG⊗CH M .

As an exercise you should show that Ftrivn(z) = hn(z) = s(n)(z) and that more

generally Lλ, the irreducible representation of Sn associated to λ, is sent to sλ(z),

i.e. that χλ(w) = 〈sλ, pτ (w)〉 (we write χλ for χLλ).

One consequence of this definition and these observations is that

FIndSn
Sµ

(trivµ)(z) =
r∏
i=1

Ftrivµi
(z) =

r∏
i=1

hµi = hµ

where Sµ = Sµ1
× Sµ2

× · · · × Sµr is a Young subgroup of Sn. Thus

〈sλ, hµ〉 = 〈χλ, IndSnSµ
(trivµ)〉 = Kλ,µ,

a Kostka number (and in particular non-negative). So hµ =
∑
λKλ,µsλ. Similarly,

we see that sλ =
∑
µKλ,µmµ. Thus the Frobenius map gives positivity results (and

interpretation) for transition matrices in symmetric function theory.

The Frobenius map generalises to a map on multi-graded Sn-representations. This

means for instance that if A =
⊕

r,s∈Z Ar,s is a direct sum decomposition of Sn-

representations labelled by pairs of integers, then we can set

FA(z; q, t) =
∑
r,s∈Z

FAr,s(z)q
str ∈ Λq,t.

So there is a relationship between bigraded representations of Sn and (q, t)-symmetric

function theory.

1.2. Plethysm. — For any A ∈ Λq,t we introduce the following Q(q, t)-linear operation

on Λq,t. For each k > 0 set pk[A] = A|q 7→qk,t7→tk,zi 7→zki . Since the pk freely generate

Λq,t as a Q(q, t)-algebra this leads to an endomorphism evA : Λq,t −→ Λq,t sending

pi1 · · · pit to pi1 [A] · · · pit [A]. This defines the plethystic substitution f [A] = evA(f).

For instance, if we set Z = z1 + z2 + · · · = p1 = h1 = m(1) = s(1) then we see

pk[Z] = pk(z); pk[−Z] = −pk(z); and so pk[Z(1− t)] = pk(z)(1− tk).

Similarly, using Z/(1− t) = Z + tZ + t2Z + · · · , we find

pk[Z/(1− t)] =
∑
i≥0

pk(z)tik =
1

1− tk
pk(z).
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