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Abstract. — Moment graphs and sheaves on moment graphs are basically combi-

natorial objects that have be used to describe equivariant intersectiion cohomology.

In these lectures we are going to show that they can be used to provide a direct

link from this cohomology to the representation theory of simple Lie algebras and of

simple algebraic groups. The first section contains some background on equivariant

cohomology.

Résumé (Graphes moment et représentations). — Les graphes moment et les faisceaux

sur ces graphes sont des objets de nature combinatoire, qui ont été utilisés pour

déterminer la cohomologie d’intersection équivariante de certaines variétés. Dans ces

notes, nous montrons comment ces objets permettent d’obtenir un lien direct entre

cette cohomologie et la théorie des représentations des groupes et des algèbres de

Lie simples. La première partie contient des résultats de base sur la cohomologie

équivariante.

Introduction

In a 1979 paper Kazhdan and Lusztig introduced certain polynomials that nowa-

days are called Kazhdan-Lusztig polynomials. They conjectured that these polyno-

mials determine the characters of infinite dimensional simple highest weight modules

for complex semi-simple Lie algebras. Soon afterwards Lusztig made an analogous

conjecture for the characters of irreducible representations of semi-simple algebraic

groups in prime characteristics.

The characteristic 0 conjecture was proved within a few years. Concerning prime

characteristics the best result known says that the conjecture holds in all character-

istics p greater than an unknown bound depending on the type of the group.
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In both cases the proofs rely on the fact (proved by Kazhdan and Lusztig) that

the Kazhdan-Lusztig polynomials describe the intersection cohomology of Schubert

varieties. It was then quite complicated to link the representation theory to the in-

tersection cohomology. In the characteristic 0 case this involved D–modules and the

Riemann-Hilbert correspondence. The proof of the weaker result in prime character-

istics went via quantum groups and Kac-Moody Lie algebras.

In these notes I want to report on a more direct link between representations and

cohomology. Most of this is due to Peter Fiebig. An essential tool is an alterna-

tive description of the intersection cohomology found by Tom Braden and Robert

MacPherson. A crucial point is that on one hand one has to replace the usual inter-

section cohomology by equivariant intersection cohomology, while on the other hand

one has to work with deformations of representations, i.e., with lifts of the modules

to a suitable local ring that has our original ground field as its residue field.

Braden and MacPherson looked at varieties with an action of an (algebraic) torus;

under certain assumptions (satisfied by Schubert varieties) they showed that the equiv-

ariant intersection cohomology is given by a combinatorially defined sheaf on a graph,

the moment graph of the variety with the torus action.

Fiebig then constructed a functor from deformed representations to sheaves on a

moment graph. This functor takes projective indecomposable modules to the sheaves

defined by Braden and MacPherson. This is then the basis for a comparison between

character formulae and intersection cohomology.

In Section 4 of these notes I describe Fiebig’s construction in the characteristic 0

case. While Fiebig actually works with general (symmetrisable) Kac-Moody algebras,

I have restricted myself here to the less complicated case of finite dimensional semi-

simple Lie algebras. The prime characteristic case is then discussed in Section 5, but

with crucial proofs replaced by references to Fiebig’s papers.

The two middle sections 2 and 3 discuss moment graphs and sheaves on them.

I describe the Braden-MacPherson construction and follow Fiebig’s approach to a

localisation functor and its properties.

The first section looks at some cohomological background. A proof of the fact

that the Braden-MacPherson sheaf describes the equivariant intersection cohomology

was beyond the reach of these notes. Instead I go through the central definitions

in equivariant cohomology and try to make it plausible that moment graphs have

something to do with equivariant cohomology.

For advice on Section 1 I would like to thank Michel Brion and Jørgen Tornehave.

1. Cohomology

For general background in algebraic topology one may consult [14]. For more

information on fibre bundles, see [17]. (I actually looked at the first edition published

by McGraw-Hill.)
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1.1. A simple calculation. — Consider the polynomial ring S = k[x1, x2, x3] in three

indeterminates over a field k. Set α = x1−x2 and β = x2−x3. Let us determine the

following S–subalgebra of S3 = S × S × S:

Z = { (a, b, c) ∈ S3 | a ≡ b (modSα), b ≡ c (modSβ), a ≡ c (modS(α+ β)) }. (1)

We have clearly (c, c, c) ∈ Z for all c ∈ S; it follows that Z = S (1, 1, 1)⊕ Z ′ with

Z ′ = { (a, b, 0) ∈ S3 | a ≡ b (modSα), b ∈ Sβ, a ∈ S(α+ β) }.

Any triple (b (α + β), bβ, 0) with b ∈ S belongs to Z ′. This yields Z ′ = S (α +

β, β, 0)⊕ Z ′′ where Z ′′ consists of all (a, 0, 0) with a ∈ S α ∩ S (α + β). Since α and

α + β are non-associated prime elements in the unique factorisation domain S, the

last condition is equivalent to a ∈ S α (α+ β). So we get finally

Z = S (1, 1, 1)⊕ S (α+ β, β, 0)⊕ S (α (α+ β), 0, 0). (2)

So Z is a free S–module of rank 3.

Consider S as a graded ring with the usual grading doubled; so each xi is homo-

geneous of degree 2. Then also S3 and Z are naturally graded. Now (2) says that we

have an isomorphism of graded S–modules

Z ' S ⊕ S〈2〉 ⊕ S〈4〉 (3)

where quite generally 〈n〉 indicates a shift in the grading moving the homogeneous

part of degree m into degree n+m.

The point about all this is that we have above calculated (in case k = C) the

equivariant cohomology H•T (P2(C); C) where T is the algebraic torus T = C× ×
C××C× acting on P2(C) via (t1, t2, t3) · [x : y : z] = [t1x : t2y : t3z] in homogeneous

coordinates. Actually we have also calculated the ordinary cohomology H•(P2(C); C)

that we get (in this case) as Z/mZ where m is the maximal ideal of S generated by

the xi, 1 ≤ i ≤ 3. So we regain the well-known fact that H2r(P2(C); C) ' C for

0 ≤ r ≤ 2 while all remaining cohomology groups are 0.

1.2. Principal bundles. — Let G be a topological group. Recall that a G–space is a

topological space X with a continuous action G × X → X of G on X. If X is a

G–space, then we denote by X/G the space of all orbits Gx with x ∈ X endowed

with the quotient topology: If π : X → X/G takes any x ∈ X to its orbit Gx, then

U ⊂ X/G is open if and only if π−1(U) is open in X. It then follows that π is open

since π−1(π(V )) =
⋃
g∈G gV for any V ⊂ X.

A (numerable) principal G–bundle is a triple (E, p,B) where E is a G–space, B a

topological space and p : E → B a continuous map such that there exists a numerable

covering of B by open subsets U such that there exists a homeomorphism

ϕU : U ×G→ p−1(U) with p ◦ ϕU (u, g) = u and ϕU (u, gh) = g ϕU (u, h) (1)

for all u ∈ U and g, h ∈ G. (The numerability condition is automatically satisfied if

B is a paracompact Hausdorff space. We assume in the following all bundles to be

numerable.)
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Note that these conditions imply that the fibres of p are exactly the G–orbits on E,

that each fibre p−1(b) with b ∈ B is homeomorphic to G, and that G acts freely on E:

If g ∈ G and x ∈ E with g x = x, then g = 1. It also follows that Gx 7→ p(x) is a

homeomorphism from E/G onto B and that p is open.

For example the canonical map p : Cn+1 \ {0} → Pn(C) is a principal bundle for

the multiplicative group C×. If we restrict p to the vectors of length 1, then we get a

principal bundle S2n+1 → Pn(C) for the group S1 of complex numbers of length 1.

If G is a Lie group and H a closed Lie subgroup of G, then the canonical map

G→ G/H is a principal bundle for H acting on G by right multiplication. This is a

fundamental result in Lie group theory.

If (E, p,B) is a principal bundle for a Lie group G and if H is a closed Lie subgroup

ofG, then (E, p,E/H) is a principal bundle forH where p : E → E/H maps any v ∈ E
to its H-orbit Hv.

1.3. Universal principal bundles. — Let (E, p,B) be a principal bundle for a topological

group G and let f : B′ → B be a continuous map of topological spaces. Then one

constructs an induced principal bundle f∗(E, p,B) = (E′, p′, B′): One takes E′ as the

fibre product

E′ = B′ ×B E = { (v, x) ∈ B′ × E | f(v) = p(x) }
and one defines p′ as the projection p′(v, x) = v. The action of G on E′ is given by

g (v, x) = (v, gx); this makes sense as p(gx) = p(x) = f(v). Consider an open subset U

in B such that there exists a homeomorphism ϕU as in 1.2(1). Then V := f−1(U) is

open in B′, we have (p′)−1(V ) ⊂ V ×p−1(U) and idV ×ϕU induces a homeomorphism

{ (v, u, g) ∈ V × U ×G | f(v) = u } −→ (p′)−1(V ),

hence using (v, g) 7→ (v, f(v), g) a homeomorphism ψV : V ×G→ (p′)−1(V ) satisfying

p′ ◦ ψV (v, g) = v and g ψV (v, h) = ψV (v, gh) for all v ∈ V and g, h ∈ G.

One can show: If f1 : B′ → B and f2 : B′ → B are homotopic continuous maps,

then the induced principal bundles f∗1 (E, p,B) and f∗2 (E, p,B) are isomorphic over B′.

Here two principal G–bundles (E1, p1, B) and (E2, p2, B) are called isomorphic over B

if there exists a homeomorphism ϕ : E1 → E2 with p2 ◦ ϕ = p1 and ϕ(g x) = g ϕ(x)

for all x ∈ E1.

A principal bundle (EG, pG, BG) for a topological group G is called a universal

principal bundle for G if for every principal G–bundle (E, p,B) there exists a contin-

uous map f : B → BG such that (E, p,B) is isomorphic to f∗(EG, pG, BG) over B

and if f is uniquely determined up to homotopy by this property.

Milnor has given a general construction that associates to any topological group a

universal principal bundle. A theorem of Dold (in Ann. of Math. 78 (1963), 223–255)

says that a principal G–bundle (E, p,B) is universal if and only if E is contractible.

In case G = S1 Milnor’s construction leads to the following: Consider for any

positive integer n the principal G–bundle pn : EnG = S2n+1 → BnG = Pn(C) as in 1.2.

We have natural embeddings EnG → En+1
G and BnG → Bn+1

G induced by the embedding

Cn → Cn+1 mapping any (x1, x2, . . . , xn) to (x1, x2, . . . , xn, 0). These embeddings
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