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Abstract. — We give an introduction to the Fock space representations of the affine

Lie algebras ŝln and their quantum analogues Uq(ŝln). We explain the construction

of their canonical bases, and the relationship with decomposition matrices of q-Schur

algebras at an nth root of 1. In the last section we give a brief survey of some recent

higher level analogues of these constructions.

Résumé. — Nous donnons une introduction aux représentations de Fock des al-

gèbres de Lie affines ŝln et de leurs analogues quantiques Uq(ŝln). Nous expliquons la

construction de leurs bases canoniques, et leur relation avec les matrices de décompo-

sition des q-algèbres de Schur en une racine n-ième de l’unité. Dans la dernière partie

nous donnons un bref compte-rendu de résultats analogues récents pour les niveaux

supérieurs à 1.

1. Introduction

In the mathematical physics literature, the Fock space F is the carrier space of the

natural irreducible representation of an infinite-dimensional Heisenberg Lie algebra H.

Namely, F is the polynomial ring C[xi | i ∈ N∗], and H is the Lie algebra generated

by the derivations ∂/∂xi and the operators of multiplication by xi.

In the 70’s it was realized that the Fock space could also give rise to interesting

concrete realizations of highest weight representations of Kac-Moody affine Lie alge-

bras ĝ. Indeed ĝ has a natural Heisenberg subalgebra p (the principal subalgebra) and

the simplest highest weight ĝ-module, called the basic representation of ĝ, remains

irreducible under restriction to p. Therefore, one can in principle extend the Fock

space representation of p to a Fock space representation F of ĝ. This was first done

for ĝ = ŝl2 by Lepowsky and Wilson [37]. The Chevalley generators of ŝl2 act on F
via some interesting but complicated differential operators of infinite degree closely
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related to the vertex operators invented by physicists in the theory of dual resonance

models. Soon after, this construction was generalized to all affine Lie algebras ĝ of

A,D,E type [23].

Independently and for different purposes (the theory of soliton equations) similar

results were obtained by Date, Jimbo, Kashiwara and Miwa [4] for classical affine Lie

algebras. Their approach is however different. They first endow F with an action

of an infinite rank affine Lie algebra and then restrict it to various subalgebras ĝ to

obtain their basic representations. In type A for example, they realize in F the basic

representation of gl∞ (related to the KP-hierarchy of soliton equations) and restrict

it to natural subalgebras isomorphic to ŝln (n > 2) to get Fock space representations

of these algebras (related to the KdV-hierarchy for n = 2). In this approach, the Fock

space is rather the carrier space of the natural representation of an infinite-dimensional

Clifford algebra, that is, an infinite dimensional analogue of an exterior algebra. The

natural isomorphism between this “fermionic” construction and the previous“bosonic”

construction is called the boson-fermion correspondence.

The basic representation of ĝ has level one. Higher level irreducible representations

can also be constructed as subrepresentations of higher level Fock space representa-

tions of ĝ [11, 12].

After quantum enveloping algebras of Kac-Moody algebras were invented by Jimbo

and Drinfeld, it became a natural question to construct the q-analogues of the above

Fock space representations. The first results in this direction were obtained by Hayashi

[16]. His construction was soon developed by Misra and Miwa [43], who showed that

the Fock space representation of Uq(ŝln) has a crystal basis (crystal bases had just been

introduced by Kashiwara) and described it completely in terms of Young diagrams.

This was the first example of a crystal basis of an infinite-dimensional representation.

Another construction of the level one Fock space representation of Uq(ŝln) was given

by Kashiwara, Miwa and Stern [29], in terms of semi-infinite q-wedges. This relied on

the polynomial tensor representations of Uq(ŝln) which give rise to the quantum affine

analogue of the Schur-Weyl duality obtained by Ginzburg, Reshetikhin and Vasserot

[13], and Chari and Pressley [3] independently.

In [32] and [35], some conjectures were formulated relating the decomposition

matrices of type A Hecke algebras and q-Schur algebras at an nth root of unity on the

one hand, and the global crystal basis of the Fock space representation F of Uq(ŝln)

on the other hand. Note that [35] contains in particular the definition of the global

basis of F , which does not follow from the general theory of Kashiwara or Lusztig.

The conjecture on Hecke algebras was proved by Ariki [1], and the conjecture on

Schur algebras by Varagnolo and Vasserot [51].

Slightly after, Uglov gave a remarkable generalization of the results of [29], [35],

and [51] to higher levels. Together with Takemura [48], he introduced a semi-infinite

wedge realization of the level ` Fock space representations of Uq(ŝln), and in [49, 50] he

constructed their canonical bases and expressed their coefficients in terms of Kazhdan-

Lusztig polynomials for the affine symmetric groups.
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A full understanding of these coefficients as decomposition numbers is still missing.

Recently, Yvonne [52] has formulated a precise conjecture stating that, under certain

conditions on the components of the multi-charge of the Fock space, the coefficients of

Uglov’s bases should give the decomposition numbers of the cyclotomic q-Schur alge-

bras of Dipper, James and Mathas [7]. Rouquier [45] has generalized this conjecture

to all multi-charges. In his version the cyclotomic q-Schur algebras are replaced by

some quasi-hereditary algebras arising from the category O of the rational Cherednik

algebras attached to complex reflection groups of type G(`, 1,m).

In these lectures we first present in Section 2 the Fock space representations of the

affine Lie algebra ŝln. We chose the most suitable construction for our purpose of

q-deformation, namely, we realize F as a space of semi-infinite wedges (the fermionic

picture). In Section 3 we explain the level one Fock space representation of Uq(ŝln)

and construct its canonical bases. In Section 4 we explain the conjecture of [35] and

its proof by Varagnolo and Vasserot. Finally, in Section 5 we indicate the main lines

of Uglov’s construction of higher level Fock space representations of Uq(ŝln), and of

their canonical bases, and we give a short review of Yvonne’s work.

2. Fock space representations of ŝln

2.1. The Lie algebra ŝln and its wedge space representations. — We fix an integer n > 2.

2.1.1. The Lie algebra sln. — The Lie algebra g = sln of traceless n × n complex

matrices has Chevalley generators

Ei = Ei,i+1, Fi = Ei+1,i, Hi = Eii − Ei+1,i+1, (1 6 i 6 n− 1).

Its natural action on V = Cn = ⊕ni=1Cvi is

Eivj = δj,i+1vi, Fivj = δj,ivi+1, Hivj = δj,ivi − δj,i+1vi+1, (1 6 i 6 n− 1).

We may picture the action of g on V as follows

v1
F1−→ v2

F2−→ · · · Fn−1−→ vn

2.1.2. The Lie algebra L(sln). — The loop space L(g) = g⊗C[z, z−1] is a Lie algebra

under the Lie bracket

[a⊗ zk, b⊗ zl] = [a, b]⊗ zk+l, (a, b ∈ g, k, l ∈ Z).

The loop algebra L(g) naturally acts on V (z) = V ⊗ C[z, z−1] by

(a⊗ zk) · (v ⊗ zl) = av ⊗ zk+l, (a ∈ g, v ∈ V, k, l ∈ Z).
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2.1.3. The Lie algebra ŝln. — The affine Lie algebra ĝ = ŝln is the central extension

L(g)⊕ Cc with Lie bracket

[a⊗zk+λc, b⊗zl+µc] = [a, b]⊗zk+l+k δk,−l tr (ab) c, (a, b ∈ g, λ, µ ∈ C, k, l ∈ Z).

This is a Kac-Moody algebra of type A
(1)
n−1 with Chevalley generators

ei = Ei ⊗ 1, fi = Fi ⊗ 1, hi = Hi ⊗ 1, (1 6 i 6 n− 1),

e0 = En1 ⊗ z, f0 = E1n ⊗ z−1, h0 = (Enn − E11)⊗ 1 + c.

We denote by Λi (i = 0, 1, . . . , n − 1) the fundamental weights of ĝ. By definition,

they satisfy

Λi(hj) = δij , (0 6 i, j 6 n− 1).

Let V (Λ) be the irreducible ĝ-module with highest weight Λ [22, §9.10]. If Λ =∑
i aiΛi then the central element c =

∑
i hi acts as

∑
i aiId on V (Λ), and we call

` =
∑
i ai the level of V (Λ). More generally, a representation V of ĝ is said to have

level ` if c acts on V by multiplication by `.

The loop representation V (z) can also be regarded as a representation of ĝ, in

which c acts trivially. Define

ui−nk = vi ⊗ zk, (1 6 i 6 n, k ∈ Z).

Then (uj | j ∈ Z) is a C-basis of V (z). We may picture the action of ĝ on V (z) as

follows

· · · fn−2−→ u−1
fn−1−→ u0

f0−→ u1
f1−→ u2

f2−→ · · · fn−1−→ un
f0−→ un+1

f1−→ un+2
f2−→ · · ·

Note that this is not a highest weight representation.

2.1.4. The tensor representations. — For r ∈ N∗, we consider the tensor space

V (z)⊗r. The Lie algebra ĝ acts by derivations on the tensor algebra of V (z). This

induces an action on each tensor power V (z)⊗r, namely,

x(ui1⊗· · ·⊗uir ) = (xui1)⊗· · ·⊗uir+· · ·+ui1⊗· · ·⊗(xuir ), (x ∈ ĝ, i1, · · · , ir ∈ Z).

Again c acts trivially on V (z)⊗r.

We have a vector space isomorphism V ⊗r ⊗ C[z±1 , . . . , z
±
r ]

∼−→ V (z)⊗r given by

(vi1⊗· · ·⊗vir )⊗z
j1
1 · · · zjrr 7→ (vi1⊗zj1)⊗· · ·⊗(vir⊗zjr ), (1 6 i1, . . . , ir 6 n, j1, . . . , jr ∈ Z).

2.1.5. Action of the affine symmetric group. — The symmetric group Sr acts on

V ⊗r ⊗ C[z±1 , . . . , z
±
r ] by

σ(vi1⊗· · ·⊗vir )⊗z
j1
1 · · · zjrr = (viσ−1(1)

⊗· · ·⊗viσ−1(r)
)⊗z

jσ−1(1)

1 · · · z
jσ−1(r)
r , (σ ∈ Sr).

Moreover the abelian group Zr acts on this space, namely (k1, . . . , kr) ∈ Zr acts by

multiplication by zk1
1 · · · zkrr . Hence we get an action on V (z)⊗r of the affine symmetric

group “Sr := Sr n Zr. Clearly, this action commutes with the action of ĝ.

It is convenient to describe this action in terms of the basis

(ui = ui1 ⊗ · · · ⊗ uir | i = (i1, . . . , ir) ∈ Zr).
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