Séminaires & Congrès

GEOMETRIC METHODS IN REPRESENTATION THEORY, I

Numéro 24

Michel Brion, ed.

SOCIÉTE MATHÉMATIQUE DE FRANCE

Séminaires & Congrès 24, 2010, p. 319–361

FOCK SPACE REPRESENTATIONS OF $U_q(\widehat{\mathfrak{sl}}_n)$

by

Bernard Leclerc

Abstract. — We give an introduction to the Fock space representations of the affine Lie algebras $\widehat{\mathfrak{sl}}_n$ and their quantum analogues $U_q(\widehat{\mathfrak{sl}}_n)$. We explain the construction of their canonical bases, and the relationship with decomposition matrices of q-Schur algebras at an nth root of 1. In the last section we give a brief survey of some recent higher level analogues of these constructions.

 $R\acute{sum\acute{e}}$. — Nous donnons une introduction aux représentations de Fock des algèbres de Lie affines $\widehat{\mathfrak{sl}}_n$ et de leurs analogues quantiques $U_q(\widehat{\mathfrak{sl}}_n)$. Nous expliquons la construction de leurs bases canoniques, et leur relation avec les matrices de décomposition des q-algèbres de Schur en une racine *n*-ième de l'unité. Dans la dernière partie nous donnons un bref compte-rendu de résultats analogues récents pour les niveaux supérieurs à 1.

1. Introduction

In the mathematical physics literature, the Fock space \mathcal{F} is the carrier space of the natural irreducible representation of an infinite-dimensional Heisenberg Lie algebra \mathfrak{H} . Namely, \mathcal{F} is the polynomial ring $\mathbb{C}[x_i \mid i \in \mathbb{N}^*]$, and \mathfrak{H} is the Lie algebra generated by the derivations $\partial/\partial x_i$ and the operators of multiplication by x_i .

In the 70's it was realized that the Fock space could also give rise to interesting concrete realizations of highest weight representations of Kac-Moody affine Lie algebras $\hat{\mathfrak{g}}$. Indeed $\hat{\mathfrak{g}}$ has a natural Heisenberg subalgebra \mathfrak{p} (the principal subalgebra) and the simplest highest weight $\hat{\mathfrak{g}}$ -module, called the basic representation of $\hat{\mathfrak{g}}$, remains irreducible under restriction to \mathfrak{p} . Therefore, one can in principle extend the Fock space representation of $\hat{\mathfrak{g}}$ and $\hat{\mathfrak{g}}$ has a first done for $\hat{\mathfrak{g}} = \hat{\mathfrak{sl}}_2$ by Lepowsky and Wilson [37]. The Chevalley generators of $\hat{\mathfrak{sl}}_2$ act on \mathcal{F} via some interesting but complicated differential operators of infinite degree closely

2000 Mathematics Subject Classification. — 17B37, 17B67, 20C20. Key words and phrases. — ??? related to the vertex operators invented by physicists in the theory of dual resonance models. Soon after, this construction was generalized to all affine Lie algebras $\hat{\mathfrak{g}}$ of A, D, E type [23].

Independently and for different purposes (the theory of soliton equations) similar results were obtained by Date, Jimbo, Kashiwara and Miwa [4] for classical affine Lie algebras. Their approach is however different. They first endow \mathcal{F} with an action of an infinite rank affine Lie algebra and then restrict it to various subalgebras $\hat{\mathfrak{g}}$ to obtain their basic representations. In type A for example, they realize in \mathcal{F} the basic representation of \mathfrak{gl}_{∞} (related to the KP-hierarchy of soliton equations) and restrict it to natural subalgebras isomorphic to $\widehat{\mathfrak{sl}}_n$ $(n \ge 2)$ to get Fock space representations of these algebras (related to the KdV-hierarchy for n = 2). In this approach, the Fock space is rather the carrier space of the natural representation of an infinite-dimensional Clifford algebra, that is, an infinite dimensional analogue of an exterior algebra. The natural isomorphism between this "fermionic" construction and the previous "bosonic" construction is called the boson-fermion correspondence.

The basic representation of $\hat{\mathfrak{g}}$ has level one. Higher level irreducible representations can also be constructed as subrepresentations of higher level Fock space representations of $\hat{\mathfrak{g}}$ [11, 12].

After quantum enveloping algebras of Kac-Moody algebras were invented by Jimbo and Drinfeld, it became a natural question to construct the q-analogues of the above Fock space representations. The first results in this direction were obtained by Hayashi [16]. His construction was soon developed by Misra and Miwa [43], who showed that the Fock space representation of $U_q(\widehat{\mathfrak{sl}}_n)$ has a crystal basis (crystal bases had just been introduced by Kashiwara) and described it completely in terms of Young diagrams. This was the first example of a crystal basis of an infinite-dimensional representation. Another construction of the level one Fock space representation of $U_q(\widehat{\mathfrak{sl}}_n)$ was given by Kashiwara, Miwa and Stern [29], in terms of semi-infinite q-wedges. This relied on the polynomial tensor representations of $U_q(\widehat{\mathfrak{sl}}_n)$ which give rise to the quantum affine analogue of the Schur-Weyl duality obtained by Ginzburg, Reshetikhin and Vasserot [13], and Chari and Pressley [3] independently.

In [32] and [35], some conjectures were formulated relating the decomposition matrices of type A Hecke algebras and q-Schur algebras at an nth root of unity on the one hand, and the global crystal basis of the Fock space representation \mathcal{F} of $U_q(\widehat{\mathfrak{sl}}_n)$ on the other hand. Note that [35] contains in particular the definition of the global basis of \mathcal{F} , which does not follow from the general theory of Kashiwara or Lusztig. The conjecture on Hecke algebras was proved by Ariki [1], and the conjecture on Schur algebras by Varagnolo and Vasserot [51].

Slightly after, Uglov gave a remarkable generalization of the results of [29], [35], and [51] to higher levels. Together with Takemura [48], he introduced a semi-infinite wedge realization of the level ℓ Fock space representations of $U_q(\widehat{\mathfrak{sl}}_n)$, and in [49, 50] he constructed their canonical bases and expressed their coefficients in terms of Kazhdan-Lusztig polynomials for the affine symmetric groups. A full understanding of these coefficients as decomposition numbers is still missing. Recently, Yvonne [52] has formulated a precise conjecture stating that, under certain conditions on the components of the multi-charge of the Fock space, the coefficients of Uglov's bases should give the decomposition numbers of the cyclotomic q-Schur algebras of Dipper, James and Mathas [7]. Rouquier [45] has generalized this conjecture to all multi-charges. In his version the cyclotomic q-Schur algebras are replaced by some quasi-hereditary algebras arising from the category \mathcal{O} of the rational Cherednik algebras attached to complex reflection groups of type $G(\ell, 1, m)$.

In these lectures we first present in Section 2 the Fock space representations of the affine Lie algebra $\widehat{\mathfrak{sl}}_n$. We chose the most suitable construction for our purpose of q-deformation, namely, we realize \mathcal{F} as a space of semi-infinite wedges (the fermionic picture). In Section 3 we explain the level one Fock space representation of $U_q(\widehat{\mathfrak{sl}}_n)$ and construct its canonical bases. In Section 4 we explain the conjecture of [35] and its proof by Varagnolo and Vasserot. Finally, in Section 5 we indicate the main lines of Uglov's construction of higher level Fock space representations of $U_q(\widehat{\mathfrak{sl}}_n)$, and of their canonical bases, and we give a short review of Yvonne's work.

2. Fock space representations of $\widehat{\mathfrak{sl}}_n$

2.1. The Lie algebra $\widehat{\mathfrak{sl}}_n$ and its wedge space representations. — We fix an integer $n \ge 2$.

2.1.1. The Lie algebra \mathfrak{sl}_n . — The Lie algebra $\mathfrak{g} = \mathfrak{sl}_n$ of traceless $n \times n$ complex matrices has Chevalley generators

$$E_i = E_{i,i+1}, \quad F_i = E_{i+1,i}, \quad H_i = E_{ii} - E_{i+1,i+1}, \quad (1 \le i \le n-1).$$

Its natural action on $V = \mathbb{C}^n = \bigoplus_{i=1}^n \mathbb{C}v_i$ is

$$E_i v_j = \delta_{j,i+1} v_i, \quad F_i v_j = \delta_{j,i} v_{i+1}, \quad H_i v_j = \delta_{j,i} v_i - \delta_{j,i+1} v_{i+1}, \qquad (1 \leqslant i \leqslant n-1).$$

We may picture the action of \mathfrak{g} on V as follows

$$v_1 \xrightarrow{F_1} v_2 \xrightarrow{F_2} \cdots \xrightarrow{F_{n-1}} v_n$$

2.1.2. The Lie algebra $L(\mathfrak{sl}_n)$. — The loop space $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[z, z^{-1}]$ is a Lie algebra under the Lie bracket

$$[a\otimes z^k,b\otimes z^l]=[a,b]\otimes z^{k+l},\qquad (a,b\in \mathfrak{g},\ k,l\in \mathbb{Z}).$$

The loop algebra $L(\mathfrak{g})$ naturally acts on $V(z) = V \otimes \mathbb{C}[z, z^{-1}]$ by

$$(a \otimes z^k) \cdot (v \otimes z^l) = av \otimes z^{k+l}, \qquad (a \in \mathfrak{g}, v \in V, k, l \in \mathbb{Z}).$$

2.1.3. The Lie algebra $\widehat{\mathfrak{sl}}_n$. — The affine Lie algebra $\widehat{\mathfrak{g}} = \widehat{\mathfrak{sl}}_n$ is the central extension $L(\mathfrak{g}) \oplus \mathbb{C}c$ with Lie bracket

 $[a \otimes z^k + \lambda c, \ b \otimes z^l + \mu c] = [a, b] \otimes z^{k+l} + k \, \delta_{k, -l} \operatorname{tr}(ab) c, \qquad (a, b \in \mathfrak{g}, \ \lambda, \mu \in \mathbb{C}, \ k, l \in \mathbb{Z}).$

This is a Kac-Moody algebra of type $A_{n-1}^{(1)}$ with Chevalley generators

$$e_i = E_i \otimes 1, \quad f_i = F_i \otimes 1, \quad h_i = H_i \otimes 1, \qquad (1 \le i \le n-1),$$

$$e_0 = E_{n1} \otimes z, \quad f_0 = E_{1n} \otimes z^{-1}, \quad h_0 = (E_{nn} - E_{11}) \otimes 1 + c.$$

We denote by Λ_i (i = 0, 1, ..., n - 1) the fundamental weights of $\hat{\mathfrak{g}}$. By definition, they satisfy

$$\Lambda_i(h_j) = \delta_{ij}, \qquad (0 \leqslant i,j \leqslant n-1).$$

Let $V(\Lambda)$ be the irreducible $\hat{\mathfrak{g}}$ -module with highest weight Λ [22, §9.10]. If Λ = $\sum_i a_i \Lambda_i$ then the central element $c = \sum_i h_i$ acts as $\sum_i a_i \mathrm{Id}$ on $V(\Lambda)$, and we call $\overline{\ell} = \sum_i a_i$ the level of $V(\Lambda)$. More generally, a representation V of $\hat{\mathfrak{g}}$ is said to have *level* ℓ if c acts on V by multiplication by ℓ .

The loop representation V(z) can also be regarded as a representation of $\hat{\mathfrak{g}}$, in which c acts trivially. Define

$$u_{i-nk} = v_i \otimes z^k, \qquad (1 \leqslant i \leqslant n, \ k \in \mathbb{Z}).$$

Then $(u_j \mid j \in \mathbb{Z})$ is a \mathbb{C} -basis of V(z). We may picture the action of $\hat{\mathfrak{g}}$ on V(z) as follows follows

$$\cdots \xrightarrow{f_{n-2}} u_{-1} \xrightarrow{f_{n-1}} u_0 \xrightarrow{f_0} u_1 \xrightarrow{f_1} u_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} u_n \xrightarrow{f_0} u_{n+1} \xrightarrow{f_1} u_{n+2} \xrightarrow{f_2} \cdots$$

Note that this is not a highest weight representation.

2.1.4. The tensor representations. — For $r \in \mathbb{N}^*$, we consider the tensor space $V(z)^{\otimes r}$. The Lie algebra $\widehat{\mathfrak{g}}$ acts by derivations on the tensor algebra of V(z). This induces an action on each tensor power $V(z)^{\otimes r}$, namely,

$$x(u_{i_1} \otimes \dots \otimes u_{i_r}) = (xu_{i_1}) \otimes \dots \otimes u_{i_r} + \dots + u_{i_1} \otimes \dots \otimes (xu_{i_r}), \qquad (x \in \widehat{\mathfrak{g}}, \ i_1, \dots, i_r \in \mathbb{Z}).$$

Again c acts trivially on $V(z)^{\otimes r}$.

We have a vector space isomorphism $V^{\otimes r} \otimes \mathbb{C}[z_1^{\pm}, \ldots, z_r^{\pm}] \xrightarrow{\sim} V(z)^{\otimes r}$ given by $(v_{i_1} \otimes \cdots \otimes v_{i_r}) \otimes z_1^{j_1} \cdots z_r^{j_r} \mapsto (v_{i_1} \otimes z^{j_1}) \otimes \cdots \otimes (v_{i_r} \otimes z^{j_r}), \qquad (1 \leqslant i_1, \dots, i_r \leqslant n, \ j_1, \dots, j_r \in \mathbb{Z}).$

2.1.5. Action of the affine symmetric group. — The symmetric group \mathfrak{S}_r acts on $V^{\otimes r} \otimes \mathbb{C}[z_1^{\pm}, \dots, z_r^{\pm}]$ by

$$\sigma(v_{i_1} \otimes \cdots \otimes v_{i_r}) \otimes z_1^{j_1} \cdots z_r^{j_r} = (v_{i_{\sigma^{-1}(1)}} \otimes \cdots \otimes v_{i_{\sigma^{-1}(r)}}) \otimes z_1^{j_{\sigma^{-1}(1)}} \cdots z_r^{j_{\sigma^{-1}(r)}}, \qquad (\sigma \in \mathfrak{S}_r).$$

Moreover the abelian group \mathbb{Z}^r acts on this space, namely $(k_1, \ldots, k_r) \in \mathbb{Z}^r$ acts by multiplication by $z_1^{k_1} \cdots z_r^{k_r}$. Hence we get an action on $V(z)^{\otimes r}$ of the affine symmetric group $\widehat{\mathfrak{S}}_r := \mathfrak{S}_r \ltimes \mathbb{Z}^r$. Clearly, this action commutes with the action of $\widehat{\mathfrak{g}}$.

It is convenient to describe this action in terms of the basis

$$(u_{\mathbf{i}} = u_{i_1} \otimes \cdots \otimes u_{i_r} \mid \mathbf{i} = (i_1, \dots, i_r) \in \mathbb{Z}^r).$$

SÉMINAIRES & CONGRÈS 24