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SEMIGROUPS AND CONTROL THEORY
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Diomedes Bárcenas et Hugo Leiva

Abstract. — The theory of strongly continuous semigroups, beyond the functional
analysis, has found applications in many branches of mathematics such as differential
equations, probability, geometry of Banach spaces and control theory. In this work
we have limited ourselves to the study of the strictly necessary relationship between
strongly continuous semigroups and the structure of the underlying Banach spaces
for the study of the theory of control. Particularly important are the relationships
that relate to the adjoint of a strongy continous semigroup that can be factorized
through an Asplund space, in this case the adjoint semigroup is strongy continuous
on (0,∞), a fact which is very important in control theory. For the case in which the
semigroup in consideration is compact, the associated control system can never be
exactly controllable in finite time.

Résumé (Semigroupes et théorie de contrôle). — La théorie des semigroupes fortement
continus, au-delà de lánalyse fonctionnelle, a trouvé des applications dans de
nombreuses branches des mathématiques comme les équations différentielles, les
probabilités, la géométrie des espaces de Banach et la théorie du contrôle.

Dans ce travail, nous nous sommes limités à l’étude de la relation strictement
nécessaire entre les semigroupes fortement continus et la structure des espaces
de Banach sous-jacents, pour l’étude de la théorie du contrôle. Particulièrement
importantes sont les relations qui concernent l’adjoint d’un semigroupe fortement
continu qui peut être factorisé par le biais d’un espace d’Asplund dans ce cas.
L’adjoint du semigroupe est fortement continu sur (0,∞), ce qui est très important
dans la théorie du contrôle. Dans le cas où le semigroupe en considération est
compact, le système de contrôle associé ne peut jamais être exactement contrôlable
en temps fini.
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1. Preface

In these notes we present the basic material of the workshop on Semigroup of
Operators and Control Theory delivered by the first author in CIMPA School on
Orthogonal Family and Semigroups on Analysis and Probability at University of Los
Andes, Mérida, Venezuela from January 30 to February 11, 2006.

The course was based in the notes written by the authors on Semigrupos Fuerte-
mente Continuos y Algunas Aplicaciones, which were written as a supporting material
for a corresponding course for XV Escuela Venezolana de Matemáticas and II Escuela
Matemáticas de América Latina y el Caribe, the text does not include the chapter III
on differential equations of the original manuscript because it is out of the taught at
CIMPA School.

The idea of this presentation is to describe some applications of the theory of
semigroup in control theory. It does not pretend to be a survey on the subject. It
only tries to illustrate the topic on which the authors lately have been interested
in. For these reasons, these notes have been structured in the following three chapters.

Chapter I deals with some preliminary facts such as some generalities on Banach
spaces and vector measures, Bochner integral and Radon Nikodym Property in
Banach spaces. The material on Banach spaces is classical and can be found in
several books on Functional Analysis quoted in our references, while the facts about
vector measures can be found in Diestel-Uhl [17] and van Dulst [18].

Chapter II is devoted to the study of the adjoint semigroup for which a nice
treatment can be found in van Neerven [29] and Nagel [28]. Our presentation is
inspired by [3], thinking on some applications appearing in chapter III.

Chapter III deals with the structure of the range of the semigroup and the
corresponding action on the continuity of the adjoint semigroup together with the
application to control theory.

The results on measurable multifunctions and null controllability in reflexive
Banach spaces come from [1], [2] and the general case from [20] and [3]. Many
results regarding to exact and approximate controllability are taken from [11] and
[12]; further developments and generalization can be found in [6] [7] [8] and [20]; in
particular, proposition 2.6 is taking from [6], where it is proved in a more general
setting. The bibliography does not pretend to be complete; we only quoted those
papers used in the written of this work. No indication of the source of a result does
not mean it appears the first time in this work.

SÉMINAIRES & CONGRÈS 25



SEMIGROUPS AND CONTROL THEORY 3

2. Preliminaries

In this chapter we present some results from Functional Analysis which will be
used in this work. Particulary, characterizations of surjective operators, the Bochner
Integral and the Radon Nikodym Property.

3. Characterization of Surjective Operators

Theorem 3.1 (Open Mapping Theorem). — Let X and Y be Banach spaces and T ∈
L(X,Y ) a surjective operator. Then there is α > 0 such that

T (BX(0, 1)) ⊃ BY (0, α).

Theorem 3.2. — Let X and Y be Banach spaces and consider T ∈ L(X,Y ) with
RangT = Y . Then, there is α > 0 such that for S ∈ L(X,Y ) with ‖T − S‖ < α =⇒
RangS = Y .

Proof. Suppose T ∈ L(X,Y ) and RangT = Y . Then by the Open Mapping Theorem
there exists α ∈ (0, 1) such that

(3.1) αBY ⊆ T (
1

2
BX) ⊆ T (BX).

Assume that S ∈ L(X,Y ) with ‖T − S‖ < α, and consider y0 ∈ αBY . Then, there
exists x0 ∈ X such that Tx0 = y0, and putting y1 = Sx0 we obtain

‖y1 − y0‖ = ‖Tx0 − Sx0‖ ≤ ‖T − S‖ ≤ α.

Next, since y0 − y1 − y2 ∈ 1
2BY ⊂

1
2T ( 1

22BX), there exists x2 ∈ 1
22BX such that

Tx2 = y0 − y1 − y2. Now, putting y3 = Sx2 we obtain that

‖y0 − y1 − y2 − y3‖ = ‖Tx2 − Sx2‖ ≤
α

22
.

In this way we construct a pair of sequences (xn)∞n=0 ⊂ X and (yn)∞n=0 ⊂ Y such that

yn = Sxn−1 and Txn = y0 −
n∑
i=1

yi,

with ‖Txn‖ ≤ α
2n−1 and ‖xn‖ ≤ 1

2n n, ∈ N.
Since X is a Banach space, the serie

∑∞
n=0 xn converges to some x ∈ X, and

Sx = S(
∞∑
i=0

xi) =
∞∑
i=0

S(xi) =
∞∑
i=1

yi.

Since ‖y0−
∑∞
i=1 xi‖ = ‖Txn‖ → 0, we see that Sx = y0. Therefore S is surjective. �

Theorem 3.3. — Let X,Y, Z be Banach spaces and consider T ∈ L(X,Z) and S ∈
L(Y,Z). If RangeT ⊂ RangeS, then there exists γ > 0 such that

γ‖S∗z∗‖Y ∗ ≥ ‖T ∗z∗‖X∗ ∀ z∗ ∈ Z∗.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012
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Proof. We first suppose that S is one to one. Then S−1 : RangeS −→ Y is well
defined. Moreover S−1 ◦ T ∈ L(X,Y ); hence its adjoint operator is bounded, indeed
there exists γ > 0 such that

‖(S−1T )∗y∗‖X∗ ≤ γ‖y∗‖X∗ ∀ y∗ ∈ Y ∗.

On the other hand,

〈(S−1 ◦ T )∗y∗, x〉X∗,X = 〈(S−1 ◦ T )∗S∗z∗, x〉X∗,X
= 〈S∗z∗, (S−1 ◦ T )x〉Y ∗,Y
= 〈z∗, SS−1Tx〉Z∗,Z
= 〈z∗, Tx〉Z∗,Z = 〈T ∗z∗, y〉

From here we have that
(S−1T )∗y∗ = T ∗z∗

which implies
‖T ∗z∗‖X∗ ≤ γ‖S∗z∗‖Y ∗ .

For the general case, consider the quotient space Ỹ = Y/ kerS which is a Banach
space with the norm

‖[y]‖ = inf
S(ỹ)=0

‖y + ỹ‖,

where [y] ∈ Ỹ denotes the equivalence class of y.
Now, we define

S̃ : Ỹ −→ Z, as S̃([y]) = S(y).
S̃ is one to one and RangeT ⊂ RangeS̃. From the first part of the proof of this
theorem we have:

γ‖S̃∗z∗‖Ỹ ∗ ≥ ‖T
∗z∗‖X∗ ∀ z∗ ∈ Z∗.

From the definition of the quotient map S̃ we have that

‖S̃∗z∗‖Ỹ ∗ = ‖S∗z∗‖Y ∗ ,

and the theorem is proved. �

Theorem 3.4. — If T ∈ L(X,Y ) and S ∈ L(X,Z), where X,Y and Z are Banach
spaces, and there is a constant γ > 0, such that

‖Tx‖Y ≤ γ‖Sx‖Z , ∀ x ∈ X

then
Range(T ∗) ⊂ Range(S∗).

Proof. Take x∗ ∈ RangeT ∗, indeed x∗ = T ∗y∗ for some y∗ ∈ Y ∗. We want to find
z∗ ∈ Z∗ such that x∗ = S∗z∗. This is equivalent to

〈y∗, Tx〉Y ∗,Y = 〈z∗, Sx〉Z∗,Z ∀ x ∈ X.

Let f be a function defined from Range(S) to C by

fSx = 〈y∗, Tx〉Y ∗,Y ;
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whence

|f(Sx)| = |〈y∗, Tx〉|
≤ γ‖y∗‖‖Tx‖Z
≤ γ‖y∗‖‖Sx‖Z ;

thus f is a bounded linear functional. So by Hahn-Banach theorem we can extend f
to the whole space Z; indeed, there exist z∗ ∈ Z∗ such that

f(Sx) = 〈z∗, Sx〉Z∗,Z ∀ x ∈ X.

Consequently
〈y∗, Tx〉Y ∗,Y = 〈z∗, Sx〉Z∗,Z ∀ x ∈ X,

therefore
x∗ = T ∗y∗ = S∗z∗.

�

Corollary 3.1. — Let X,Y, Z be reflexive Banach spaces, T ∈ L(X,Z), and S ∈
L(Y,Z). Then the following are equivalent conditions:

i) RangeT ⊂ RangeS
ii) There is γ > 0 such that

γ‖S∗y∗‖ ≥ ‖x∗‖X∗ ∀ x∗ ∈ X∗.

Corollary 3.2. — If X,Y are Banach spaces and S ∈ L(X,Y ), the following are equiv-
alent conditions:

i) RangeS = Y

ii) There is γ > 0, such that

γ‖S∗y∗‖Y ∗ ≥ ‖T ∗x∗‖X∗ ∀ x∗ ∈ X∗

Theorem 3.5. — Let T ∈ L(X,Y ) and S ∈ L(Z, Y ) where X,Y and Z are Banach
spaces. Then the following conditions are equivalent:

i) ker(S∗) ⊂ ker(T ∗)

ii) RangeS ⊃ RangeT

Proof. Suppose kerS∗ ⊂ kerT ∗ and RangeS does not contain RangeT . Then there
is y ∈ RangeT such that y /∈ RangeS. Hence there is y∗ ∈ Y ∗ with y∗ 6= 0 such that
〈y∗, y〉 6= 0 and y∗|RangeS ≡ 0. Therefore

〈y∗, Sz〉Z∗,Z = 0 ∀ z ∈ Z.

=⇒ y∗ ∈ kerS∗, and consequently y∗ ∈ kerT ∗. Thus

〈y∗, Tx〉 = 0 ∀ x ∈ X.

Since y ∈ RangeT , there exists a sequence (xn) ⊂ X such that y = lim
n→∞

Txn.
Therefore

0 = lim
n→0
〈T ∗y∗, xn〉 = lim

n→∞
〈y∗, Txn〉 = 〈y∗, y〉
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