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LIE ALGEBRAS, REPRESENTATIONS, AND ANALYTIC
SEMIGROUPS THROUGH DUAL VECTOR FIELDS

by

Philip Feinsilver

Abstract. — We want to present the basics of a new point of view in a variety of
areas using the idea of Dual Vector Fields. These topics include operator calculus,
representations of Lie algebras, analytic semigroups, and probability semigroups.

Résumé (Algèbres de Lie, représentations, et semigroupes analytiques par champs de vecteurs
duals)

Nous voulons présenter les fondements d’un nouveau point de vue dans une
multitude des domaines, en utilisant l’idée des Champs de Vecteurs Duals. Ces
sujets comprennent le calcul opérationnel, les représentations des algèbres de Lie,
semigroupes analytiques et semigroupes probabilistes.

LECTURE I

COHERENT STATE REPRESENTATIONS: OPERATORS AND
DUALITY

Let us start with the basics of operators and duality with some examples relating
to probability theory.
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1. Simple Fock spaces

We have a vector space H with a basis {ψn}n≥0. Throughout, our scalars will be
C, the complex numbers, or alternatively, we restrict to R, the real numbers.

The Dirac notation writes ψn = |n 〉, called “ket", where the label n is the eigen-
value of an operator on H. In this case, it is the number operator, N , Nψn = nψn.
In other words, N is diagonal in this basis with eigenvalues {0, 1, 2, . . .}. In realizing
these as functions, it is convenient to label them according to the number of under-
lying variables. For d variables, {x1, . . . , xd }, we write the basis as ψn = ψn1,...,nd =

|n1, . . . , nd 〉, so that n denotes the corresponding multi-index (n1, . . . , nd), with num-
ber operators Niψn = ni ψn. Then N =

∑
iNi acts as Nψn = |n|ψn, the total degree

of ψn. The state | 0 〉 is called the vacuum state, is often denoted by Ω, and is mapped
to the zero vector by all lowering operators.

1.1. Raising and lowering operators. — For a single index, introduce raising and low-
ering operators, R and V.

R|n 〉 = |n+ 1 〉, V |n 〉 = n|n− 1 〉

Think of going from xn → xn+1 by multiplying by x, and correspondingly from
xn → nxn−1 by differentiation. The specific operators analogous to differentiation are
denoted by V’s and referred to as velocity operators as “lowering operator" refers more
generally to any operator lowering the degree. For d variables, we have

Ri |n 〉 = |n+ ei 〉 = |n1, . . . , ni + 1, . . . , nd 〉, Vi |n 〉 = ni|n− ei 〉

where ei is a vector of 0’s except for a 1 in the ith spot.

1.2. Lie algebras. — A Lie algebra, g, is an algebra where the multiplication, denoted
by brackets [a, b], satisfies [a, a] = 0 and the Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

In our case, we will use the Lie product given by [a, b] = ab− ba, the commutator on
an associative algebra.

A representation of g is a realization of g where the elements are given as linear
maps on a vector space and the Lie product maps to the commutator. The action of
a as a linear map on g given by b→ [a, b] is the adjoint representation, the mapping
written as

(ad a)(b) = [a, b]

Typically a Lie algebra is specified by prescribed commutation relations on a basis.
Elements a and b commute if [a, b] = 0. Commutation relations between commuting
elements are not explicitly indicated.

Throughout, we will use { ξ1, ξ2, . . . , ξd } as the basis for a d-dimensional Lie alge-
bra. Then the Lie algebra is determined by the linear maps

(ad ξk)(ξj) = [ξk, ξj ] =
∑
i

cikjξi
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The coefficients cikj are called the structure constants of the Lie algebra. These deter-
mine matrices of the adjoint representation, which we denote by ξ̌k,

(ξ̌k)ij = cikj

The fact that this is a representation follows from the Jacobi identity.
We work mainly with operators acting on polynomials and by extension to holo-

morphic functions defined in some given neighborhood of 0, which we call locally
holomorphic functions. Alternatively, we can use formal power series. We refer to
these three classes of objects as “suitable functions".

The Heisenberg-Weyl algebra is given by the commutation rule

[ξ3, ξ1] = ξ2

where it is implicit that ξ2 is in the center, i.e., it commutes with ξ1 and ξ3. A matrix
representation of the HW algebra is

ξ1 =

Ö
0 0 0

0 0 1

0 0 0

è
, ξ2 =

Ö
0 0 1

0 0 0

0 0 0

è
, ξ3 =

Ö
0 1 0

0 0 0

0 0 0

è
Note that the adjoint representation is different:

ξ̌1 =

Ö
0 0 0

0 0 −1

0 0 0

è
, ξ̌2 =

Ö
0 0 0

0 0 0

0 0 0

è
, ξ̌3 =

Ö
0 0 0

1 0 0

0 0 0

è
1.3. Representations of HW. — Now, notice that, for one variable, R and V acting on
the vectors |n 〉 satisfy [V,R] = I, where I is the identity operator, i.e.,

(VR−RV)|n 〉 = (n+ 1− n)|n 〉 = |n 〉

And I commutes with all operators. So this is a representation of the HW algebra.

Remark 1.1. — We will usually identify a multiple of the identity operator, say, cI,
with the number c.

Let’s use the realization of operators on polynomials as follows. We denote

X operator of multiplication by x, D differentiation with respect to x

The basis is |n 〉 = xn, with | 0 〉 = 1. For polynomials in d variables, we have corre-
spondingly Xi as multiplication by xi and Di partial differentiation with respect to
xi. Note the commutation relations

[Dj , Xi] = δij I

which prescribe the d-dimensional HW algebra. Any family of operators {Ri,Vj }
satisfying analogous commutation relations are called boson operators in quantum
probability.
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Note that any Lie algebra may be realized using first-order differential operators,
vector fields, by the mapping,

ξi ↔ Xλc
λ
iµDµ

called the Jordan map.

Notation 1.2. — Our summation convention is: Greek indices are always summed.

When we have specific realizations of R’s and V’s acting on polynomials or spaces
of functions, we denote the corresponding operators by R’s and V ’s.

1.4. Examples in probability theory. — Interesting examples are available from proba-
bility theory. We look at the moment polynomials arising from a distribution and we
look at certain families of orthogonal polynomials for some probability distributions.

1.4.1. Gaussian. — Let pt(dx) =
e−x

2/(2t)

√
2πt

dx be the Gaussian density with mean

zero, variance t > 0. Defining

(1) hn(x) =

∫ ∞
−∞

(x+ y)n pt(dy) =

∫ ∞
−∞

(x+ y
√
t)np1(dy)

we write this, using angle brackets to denote expected value, as

〈(x+Xt)
n〉

where Xt is the corresponding Gaussian variable.
One sees that V = D, i.e., Dhn = nhn−1. The raising operator, R, is no longer X,

but, in fact, is R = X + tD. This can be written as a recurrence formula. Another
way to think of it as a realization ofX in terms of R and V . FromX = R−tD = R−tV
we have

xhn = hn+1 − tn hn−1

It turns out that a family of Hermite polynomials is orthogonal with respect to this
distribution. They are given by

Hn(x) =

∫ ∞
−∞

(x+ iy)n pt(dy)

where i =
√
−1. From the second formulation in equation (1), we see that one has

replaced t→ −t. Thus,
R = X − tD, V = D

for the Hermite polynomials. The recurrence is thus

xψn = hn+1 + tn hn−1

which is the three-term recurrence a family of orthogonal polynomials must satisfy.
Notice that R∗ = tV , the operator adjoint to R with respect to the inner product

〈f, g〉 =

∫ ∞
−∞

f(y)g(y) pt(dy)

SÉMINAIRES & CONGRÈS 25



DUAL VECTOR FIELDS 115

on polynomials or smooth functions with derivatives in L2(R) of the corresponding
Gaussian measure.

1.4.2. Poisson. — Now consider the Poisson distribution, with

pt(x) = e−t
tx

x!

for integer x ≥ 0. The Poisson-Charlier polynomials are orthogonal with respect to
this Poisson distribution. They have generating function

G(v) = G(v;x, t) = (1 + v)x e−vt =
∑
n≥0

vn

n!
Pn(x, t)

Verifying that 〈G(v)G(w)〉 is a function of vw alone shows that the polynomials Pn
are indeed orthogonal. We have the difference operator expressed in terms of D by

(eD − 1)f(x) = f(x+ 1)− f(x)

on polynomials (in general, suitable functions). Notice the duality “multiplication by
v" and the lowering operator V Pn = nPn−1. Acting on G, we see that V = eD − 1.
The raising operator R is dual to differentiation with respect to v. In other words,
the operators V,R are given by transferring the action of the HW representation
“multiplication by v, differentiation with respect to v" via the generating function G
to the sequence {Pn }. We must express the result of differentiating with respect to
v in terms of X and D. Noting that

1

1 + V
= e−D

we find the HW representation

R = Xe−D − tI, V = eD − I

Solving, we find
X = (R+ t)(1 + V ) = t+R+RV + tV

Note that RV is the number operator. Thus the recurrence formula

xPn = Pn+1 + (n+ t)Pn + ntPn−1

1.4.3. Analytic HW realizations. — To see why we expect that [V,R] = I from the
above formulas, we first note that for any polynomial f(x), inductively it follows that
[V, f(R)] = f ′(R) acting on kets. Dually, [f(V ), R] = f ′(V ). So the analogous formulas
hold for all boson operators. These extend to suitable functions f . In particular, if
V (z) denotes a locally holomorphic function, such that V (0) = 0, V ′(0) 6= 0, we define
canonical boson operators associated to V by

R = XW (D), V = V (D)

where W (D) = V ′(D)−1, a notation to be used consistently throughout. The vacuum
for the representation is the function equal to 1.
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