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ANALYSIS OF ORNSTEIN–UHLENBECK AND LAGUERRE
STOCHASTIC PROCESSES

by

Piotr Graczyk & Tomasz Jakubowski

Abstract. — The objective of these lectures is to present Ornstein–Uhlenbeck and re-
lated stochastic processes to a wide mathematical audience with a modest preparation
in stochastic analysis.

The aim of the first part of the lectures (Chapter 1) is to discuss the Ornstein–
Uhlenbeck and the Squared Radial Ornstein–Uhlenbeck stochastic diffusion pro-
cesses, whose infinitesimal generators are, respectively, the Ornstein–Uhlenbeck op-
erator and the Laguerre operator.

In the second chapter of these lectures the Ornstein–Uhlenbeck processes gov-
erned by α–stable rotationally invariant processes are studied. This corresponds
to replacing the Laplacian ∆ by the fractionnary Laplacian −(−∆)α/2 in the
Ornstein–Uhlenbeck generator L = 1

2
∆− x · ∇. More general drift terms b(x) · ∇ are

also considered at the end of Chapter 2.

Résumé (Analyse des Processus Stochastiques d’Ornstein–Uhlenbeck et de Laguerre)
L’objectif de ce cours est de présenter le processus stochastique d’Orns–tein–

Uhlenbeck et les processus y liés, à un large public mathématique avec une préparation
modeste en analyse stochastique.

Le but de la première partie du cours (Chapitre 1) est de donner une présentation
des diffusions d’Ornstein–Uhlenbeck et du processus d’Ornstein–Uhlenbeck radial au
carré. Leurs générateurs infinitésimaux sont, respectivement, l’opérator d’Ornstein–
Uhlenbeck et l’opérateur de Laguerre.

Dans le deuxième chapitre de ce cours nous étudions les processus d’Ornstein–
Uhlenbeck dirigés par les processus α–stables, invariants par rotations. Ceci
correspond à remplacer le laplacien ∆ par le laplacien fractionnaire −(−∆)α/2

dans le générateur d’Ornstein–Uhlenbeck L = 1
2

∆ − x · ∇. Les termes de drift plus
généraux b(x) · ∇ sont également considerés à la fin du chapitre 2.

2010 Mathematics Subject Classification. — 60J45, 60G15, 60G40.
Key words and phrases. — Ornstein–Uhlenbeck diffusion, radial Ornstein–Uhlenbeck process, Ornstein–
Uhlenbeck process driven by a Lévy process, exit time, Poisson kernel.

© Séminaires et Congrès 25, SMF 2012



196 P. GRACZYK & T. JAKUBOWSKI

1. ORNSTEIN–UHLENBECK AND LAGUERRE DIFFUSIONS

1.1. Introduction. — The Ornstein–Uhlenbeck stochastic diffusion process is very well
presented in the stochastic literature. It was introduced in [Ornstein–Uhlenbeck]
already in 1930. For this reason, in these lectures we are not going to deal much with
this classical diffusion, but only present some of its main features that are not always
well realised.

1.2. Physical motivation of the Ornstein–Uhlenbeck diffusion. — The main reference for
this section is [Breiman], p.347–350.

A stochastic process {Yt : t ≥ 0} has independent increments if for all t1 < t2 <

· · · < tn the random variables Yt1 − Yt0 , Yt2 − Yt1 are independent. The increments
are further said to be stationary if, for any t > s and h > 0, the distribution of
Yt+h − Ys+h is the same as the distribution of Yt − Ys.

The Brownian motion(Wiener process) was constructed as a model for a mi-
croscopic particle in liquid suspension. Recall that a stochastic process {Bt}t≥0

is a Brownian motion if it has stationary independent increments (is a Lévy process),
if Bt is normally N(0, t)–distributed and if B0 = 0.

It follows immediately that that the process {Bt}t≥0 is:

– Gaussian ( a stochastic process Yt is Gaussian if for all t1 < t2 < · · · < tn the
vector (Yt1 , Yt2 , . . . , Ytn) is multivariate normally distributed)

– Markovian (i.e. for all t1 < t2 < · · · < tn we have P (Ytn ≤ y| Yt1 , Yt2 , . . . , Ytn−1) =

P (Ytn ≤ y|Ytn−1
)

One may not require the normality of Bt but impose a physical continuity of
trajectories condition that implies the normality of Bt.

An outstanding nonreality of the Brownian motion model is the assumption that
increments in displacement are independent. We ignore in this way the effects of the
velocity of the particle at the beginning of the incremental period. We can do better
in the following way.

Let V (t) be the velocity of a particle of mass m suspended in liquid. Set

∆V = V (t+ ∆t)− V (t).

Then m∆V is the change of momentum of the particle during time ∆t.
Let M(t) be the momentum of a particle at time t. We consider ∆M , the mo-

mentum transfer due to molecular bombardment of the particle during time ∆t. We
should take into account a friction effect. Let β > 0 and −βV the viscous resistance
force. Consequently,

−βV∆t
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is the loss in momentum due to viscous forces during ∆t. Thus we have the basic
equation

(1) m∆V = −βV∆t+ ∆M.

Assume that
(i) M has independent increments
(ii) the distribution of ∆M depends only on ∆t

(iii) M(t) is continuous in t.
The third assumption of continuity of momentum may be questionnable(imagine

a hard billiard–ball model of molecules). Such a situation will be considered in the
next chapter (stable Ornstein–Uhlenbeck processes).

But (i),(ii) and (iii) characterize M(t) as a Brownian motion, possibly with a
constant drift µt, due to a constant force field and useful, for example, in accounting
for a gravity field. However we will assume no constant force field exists, and set
EM(t) = 0 and V arM(t) = EM2(t) = σ2t. Hence

M(t) = σB(t)

where B(t) is normalized Brownian motion. Equation (1) becomes

(2) m∆V = −βV∆t+ σ∆B.

It is natural to divide by ∆t and let ∆t→ 0. We produce in this way the celebrated
Langevin equation, the oldest example of a Stochastic Differential Equation

(3) m
dV

dt
= −βV + σ

dB

dt
.

There is a difficulty here: we know that the trajectories of the Brownian motion
are nowhere differentiable, so (3) makes no sense in any orthodox deterministic way.
There is however a possibility of avoiding of stochastic Itô differential calculus. We
reformulate (3) as an integral equation. Write (3) as

d

dt
(eαtV (t)) = γeαt

dB(t)

dt

with α = β/m and γ = σ/m. Assume V (0) = 0 and integrate from 0 to t to get

eαtV (t) = γ

∫ t

0

eαsdB(s).

Do an integration by parts on the integral,

eαtV (t) = γeαtB(t)− γα
∫ t

0

B(s)eαsds.

Now the integral appearing is for each ω just the integral of a continuous function
and makes sense.

Actually it is easy to see that the integral∫ t

0

eαsdB(s)
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converges as a Riemann–Stieltjes integral. The approximating sums satisfy
n−1∑
k=0

eαtk(B(tk+1)−B(tk)) = eαtB(t)−
n−1∑
k=0

(eαtk+1 − eαtk)B(tk+1)

for any partition 0 = t0 < · · · < tn = t of [0, t]. The last sum is the Riemann–Stieltjes
sum for the integral ∫ t

0

B(s)d(eαs).

For every sample path, the sum converges to this integral, if the diameter of the
partition 0 = t0 < · · · < tn = t goes to 0.

Another, more sophisticated but also more systematic argument is to use the fact
that the Riemann–Stieltjes integral

∫ b
a
f(s)dg(s) is well defined when f has bounded

q–variation and g has bounded p–variation with 1
p + 1

q > 1. We also know that the
trajectories of the Brownian motion Bt have bounded p-variation for any p > 2.

We have justified the following definition

Definition 1.1. — The Ornstein–Uhlenbeck process V (t) starting at 0 is defined as

V (t) = γ

∫ t

0

e−α(t−s)dB(s),

where the integral is in the Riemann–Stieltjes pathwise sense.

The Ornstein–Uhlenbeck process modelizes the velocity of a particle in liquid
viscous suspension. We show here some of its main properties.

Proposition 1.2. — V (t) is a Gaussian process with EV (t) = 0 and covariance

EV (s)V (t) = ρ(e−α|t−s| − e−α(s+t)).

where ρ = γ2/2α.

Proof. — The process V (t) is Gaussian because it is the limit, almost everywhere, of
the sums

n−1∑
k=0

eαtk(B(tk+1)−B(tk))

where ∆kB = B(tk+1) − B(tk) are independent, normally distributed random vari-
ables. To get the covariance, suppose s > t and put

0 = t0 < · · · < tn = t < tn+1 < · · · tm = s.

Then

V (s) = lim γ
m∑
k=0

e−α(s−tk)∆kB

V (t) = lim γ
n∑
k=0

e−α(s−tk)∆kB.
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We compute the covariance of the approximating sums. Using

E∆kB∆jB = (tk+1 − tk)δkj

we get

EV (s)V (t) = γ2 lim
n∑
k=0

e−α(s+t)+2αtk(tk+1 − tk) = γ2e−α(s+t)

∫ t

0

e2αudu.

Corollary 1.3. — limt→∞ V (t) = N(0, ρ) in law.

Proof. — This follows from the normality of V (t) and the fact that EV (t) = 0 and
V arV (t) = ρ(1− e−α2t)→ ρ.

Stationarity. What if we start the Ornstein–Uhlenbeck process not at 0 but with
the limiting distribution N(0, ρ)? The integration by parts in the Langevin equation
gives now

eαtṼ (t)− Ṽ (0) = γ

∫ t

0

eαsdB(s).

so in general we have

Ṽ (t) = e−αtṼ (0) + γ

∫ t

0

e−α(t−s)dB(s) = e−αtṼ (0) + V (t)

where V (t) = γ
∫ t

0
e−α(t−s)dB(s) is the Ornstein–Uhlenbeck process starting at 0.

Definition 1.4. — Let V (t) be an Ornstein–Uhlenbeck process starting at 0.
Let Ṽ (0) be independent of σ(V (t), t ≥ 0) and with normal N(0, ρ) law. Define the
Ornstein–Uhlenbeck process Y (t) starting from Ṽ (0) by

Y (t) = e−αtṼ (0) + V (t)

It is a solution of the Langevin equation with the original distribution V (0) = Ṽ (0).

A stochastic process {Yt : t ≥ 0} is called stationary if for all t1 < t2 < · · · < tn
and h > 0, the random vectors (Yt1 , Yt2 , . . . , Ytn) and (Yt1+h, Yt2+h, . . . , Ytn+h) are
identically distributed; that is, time shifts leave joint probabilities(thus, by Kol-
mogorov theorem, the law of the process) unchanged.

Proposition 1.5. — The process Y (t) is a stationary Gaussian process with covariance
Cov(Y (s), Y (t)) = ρe−α|t−s|.

Proof. — We compute the covariance of Y (t) in the same way as in the proof of
Proposition 1.2. The stationarity of Y (t) may be shown by a direct computation or
by the fact that a Gaussian process with zero means is stationary iff its covariance
function Γ(s, t) = φ(|s− t|).
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