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HERMITE AND LAGUERRE SEMIGROUPS
SOME RECENT DEVELOPMENTS

by

Sundaram Thangavelu

Abstract. —
We introduce and study some properties of Hermite, special Hermite and La-

guerre semigroups. The images of L2 under these semigroups are shown to be certain
weighted Bergman spaces of entire functions. The reader is expected to have some
basic knowledge of Fourier Analysis but otherwise this notes is self-contained.

Résumé (Semigroupes d’Hermite et de Laguerre
Quelques résultats récents). — Nous introduisons et nous étudions quelques propriétés
des semigroupes d’Hermite, des semigroupes spéciaux d’Hermite et des semigroupes
de Laguerre. Nous montrons que les images de l’espace L2 par ces semigroupes sont
certains espaces de Bergman des fonctions entières, avec poids. Le lecteur devrait avoir
les connaissances basiques de l’analyse de Fourier, sinon le cours est auto–suffisant.

1. Introduction

It is no exaggeration to say that Hermite functions are ubiquitous in Mathemat-
ics. They appear in such diverse fields as harmonic analysis, differential equations,
mathematical physics and probability theory. They are eigenfunctions of the simple
harmonic oscillator and hence play an important role in quantum mechanics. They are
also eigenfunctions of the Fourier transform, a fact exploited by Norbert Wiener in his
treatment of the Fourier transform. Hermite functions can be expressed as Laguerre
functions of type 1

2 and − 1
2 . In this sense Laguerre functions are generalisations of

the Hermite functions. But there is a deeper relation between these two families of
functions which arises in connection with analysis on the Heisenberg group Hn.
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The modern theory of Hermite and Laguerre expansions makes use of this connec-
tion. Heisenberg group Hn is the most well known example from the realm of nilpotent
Lie groups. No detailed harmonic analysis can be done on Hn without using Hermite
functions. The most beautiful relation between Hermite and Laguerre functions is
experessed by the formula W (ϕn−1

k ) = (2π)nPk where ϕn−1
k are Laguerre functions

of type (n− 1), Pk are the projections associated to the Hermite operator and W is
the Weyl transform related to the Schrodinger representation π1 of Hn.

Our aim in these lectures is to introduce the Hermite and Laguerre semigroups via
the Heisenberg group. Both semigroups are related to the semigroup generated by the
sublaplacian on Hn. The group Fourier transform on Hn takes this latter semigroup
into the Hermite semigroup whereas the Fourier decomposition in the central variable
in Hn leads to the so called special Hermite semigroup. This last semigroup, generated
by the special Hermite operator, encompasses all Laguerre semigroups of integer type.

After introducing the Hermite, special Hermite and Laguerre semigroups we pro-
ceed to the description of the image of L2 under these semigroups. It is a classical
result of Bargmann and Fock that the image of L2(Rn) under the Gauss-Weierstrass
semigroup can be defined as a weighted Bergman space of entire functions. This space
was associated to the realisation of the creation and annihilation operators for Bosons
in quantum physics. Similar results are known from the works of Hall [5] and Stenzel
[10] for the semigroups generated by the Laplace-Beltrami operator on compact sym-
metric spaces. Recently it has been shown that the situation is quite different in the
case of Heisenberg groups (see Krötz-Thangavelu-Xu [8]) and noncompact symmetric
spaces (see Krötz-Olafsson-Stanton [9]).

The plan of the notes is as follows. We introduce Hermite and Laguerre semigroups
in Section 2. In the process we introduce Segal-Bargmann transform on Rn and study
the Fock-Bergman space associated to the standard Laplacian on Rn. We also con-
sider the Bessel semigroup and the associated Bergman spaces. In Section 3 we study
the Hermite-Bergman and twisted Bergman spaces. The results for Laguerre semi-
groups are deduced from the corresponding results for Hermite and special Hermite
semigroups.

2. Hermite and Laguerre semigroups

2.1. Hermite functions and Bargmann transform. — We begin with the definition of
Hermite polynomials Hk(x) where k is a nonnegative integer and x ∈ R. These are
defined by

Hk(x) = (−1)kex
2 dk

dxk
(e−x

2

).

It is then easy to see that the functions h̃k(x) = Hk(x)e−
1
2x

2

are eigenfunctions of
the Hermite operator H = − d2

dx2 + x2. More precisely,

(− d2

dx2
+ x2)h̃k(x) = (2k + 1)h̃k(x).
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From this one can easily conclude that {h̃k : k = 0, 1, 2, ...} forms an orthogonal system
in the Hilbert space L2(R). The operator H can be factorised as H = 1

2 (AA∗ +A∗A)

where A = d
dx +x and A∗ = − d

dx +x is its formal adjoint. The operators A and A∗ are
called the annihilation and creation operators respectively. Another easy calculation
shows that

A∗h̃k(x) = h̃k+1(x), Ah̃k(x) = 2k ˜hk−1(x).

This shows that h̃k(x) = A∗k(e−
1
2x

2

). Using this and the relation A∗A = H − 1 along
with an induction argument we can show that∫

R
(h̃k(x))2dx = 2kk!π

1
2 .

Therefore, we conclude that the functions

hk(x) = (2kk!π
1
2 )−

1
2 h̃k(x)

form an orthonormal family of functions in L2(R). We can actually show that they
form an orthonormal basis (see below) which is called the Hermite basis in the liter-
ature.

From the definition of the Hermite polynomials it follows that Hk are given by the
generating function

∞∑
k=0

Hk(x)

k!
wk = e2xw−w2

for any w ∈ C. This can be checked by Taylor expanding the right hand side about
w = 0 and using the definition of Hk. Defining ζk(w) = (2kk!π

1
2 )−

1
2wk we can rewrite

the above as

(2.1)
∞∑
k=0

hk(x)ζk(w) = π−
1
2 e−

1
2 (x−w)2e

1
4w

2

.

The series converges uniformly over compact subsets of C. From the above we can
easily deduce

Theorem 2.1. — The family {hk : k = 0, 1, 2, ...} is an orthonormal basis for L2(R).

Proof. — As {hk : k = 0, 1, 2, ...} is an orthonormal system Bessel’s inequality shows
that

∞∑
k=0

|(f, hk)|2 ≤ ‖f‖22.

Therefore, the series
∑∞
k=0(f, hk)ζk(w) converges absolutely and equals

Bf(w) = π−
1
2 e

1
4w

2

∫
R
f(x)e−

1
2 (x−w)2dx.

If now f ∈ L2(R) is orthogonal to all hk then the integral defining Bf will be zero for
all w. This means convolution of f with the Gaussian h0(x) = π−

1
4 e−

x2

2 is identically
zero. Taking Fourier transform we get f̂ = 0 and consequently f = 0. This proves the
theorem.
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The operator B is called the Bargmann transform in the literature and has inter-
esting properties. It takes functions f ∈ L2(R) into entire fuctions Bf(w) on C. These
are not merely entire functions but also square integrable with respect to the Gaus-
sian measure dµ(w) = (4π)−

1
2 e−

1
2 |w|

2

dw. An easy calculation using polar coordinates
show that the fuctions ζk form an orthonormal system in L2(C, dµ(w)). Let F be the
subspace of L2(C, dµ(w)) consisting of entire functions. Then the equation

∞∑
k=0

(f, hk)ζk(w) = Bf(w)

shows that ∫
C
|Bf(w)|2dµ(w) =

∫
R
|f(x)|2dx.

This leads to the interesting result

Theorem 2.2. — The Bargmann transform B is an isometric isomorphism between
L2(R) and F .

Proof. — We only need to check that B is onto but this will follow once we observe
that B takes the Hermite basis into {ζk : k = 0, 1, 2, ...} and this family is an or-
thonormal basis for F . This last claim is justified since the expansion of a function F
from F in terms of ζk is nothing but its Taylor expansion.

Before proceeding further let us introduce multi-dimensional Hermite functions.
For each multi-index α ∈ Nn and x ∈ Rn we define

Φα(x) = hα1
(x1).....hαn(xn).

Then it is clear that {Φα : α ∈ Nn} is an orthonormal basis for L2(Rn). We define
the functions ζα and the space F(Cn) in a similar way. More generally, for any t > 0

we define Fock spaces Ft(Cn) as follows.

Definition 2.3. — Ft(Cn) is the space of all entire functions on Cn for which

‖F‖2Ft =

∫
Cn
|F (w)|2e−t|w|

2

dw <∞.

Note that F(Cn) = F 1
2
(Cn). The functions ζα form an orthonormal basis for

F(Cn) and the Bargmann transform is an isometric isomorphism between L2(Rn)

and F(Cn).

We conclude this subsection with another useful formula known as Mehler’s formula
for the Hermite functions.

Proposition 2.4. — For all w ∈ C with |w| < 1 we have∑
α∈Nn

Φα(x)Φα(y)w|α| = π−
n
2 (1− w2)−

n
2 e
− 1

2
1+w2

1−w2 (x2+y2)+ 2w
1−w2 x·y.
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Proof. — It is enough to prove the formula in one dimension. As the Bargmann
transform B takes the Hermite basis into the basis ζk it is unitary and hence its
inverse is given by the adjoint B∗. Hence

∞∑
k=0

hk(x)hk(y)wk =
∞∑
k=0

hk(x)B∗ζk(y)wk

and so in view of (2.1) we need to caculate B∗Fw(y) when

Fw(z) = π−
1
2 e−

1
2 (x−wz)2e

1
4w

2z2 .

Since

(B∗F, f) = (4π)−
1
2

∫
C
F (z)Bf(z)e−

1
2 |z|

2

dz

an easy calculation shows that

B∗F (y) = (4π)−
1
2

∫
C
F (z)e−

1
2 (y−z)2e

1
4 z

2

e−
1
2 |z|

2

dz.

Taking F (z) = Fw(z) = π−
1
2 e−

1
2 (x−wz)2e

1
4w

2z2 in this formula and evaluating the
Gaussian Fourier transform we complete the proof.

2.2. Gauss-Weierstrass kernel and Bergman spaces. — The space F(Cn) is known as
the Fock space in the literature. As a motivation for what we plan to do with the
Hermite and Laguerre semigroups let us look at F(Cn) more closely. Consider the
Gauss-Weierstrass kernel or simply the heat kernel associated to the standard Lapla-
cian ∆ on Rn defined by

gt(x) = (4πt)−
n
2 e−

x2

4t .

(Here and later in these notes we will be writing x2 in place of |x|2 =
∑n
j=1 x

2
j . By

the same convention for z ∈ Cn we let z2 stand for
∑n
j=1 z

2
j .) The name heat kernel

is justified since the function

Gtf(x) = f ∗ gt(x) =

∫
Rn
f(y)gt(x− y)dy

satisfies the heat equation for the Laplacian with initial condition f . Here f can be
from any of the Lp spaces over Rn.

For w ∈ Cn the heat kernel gt(w − y) makes sense as an entire function and so is
Gtf(x). That is to say the function Gtf(x) extends to Cn as an entire function of
w = u+ iv. Note that for any t > 0 we have the relation

Gtf(w) = 2−
n
2Bft((2t)

− 1
2w)e−

1
8tw

2

where ft(x) = f((2t)
1
2x) for all f ∈ L2(Rn). The isometry between L2(Rn) and F(Cn)

takes the form ∫
Cn
|G 1

2
f(u+ iv)|2e−v

2

dudv = 2−n
∫

Rn
|f(x)|2dx.
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