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Abstract. — In these notes we study the general theory of Markov semigroups estab-
lishing their basic properties and several other results. In particular we will study
semigroups associated with classical orthogonal polynomials (Ornstein-Uhlenbeck
semigroup, Laguerre semigroup and Jacobi semigroup). We will study in detail the
hypercontractivity property of the Ornstein-Uhlenbeck semigroup. In order to do
that we will prove that the Ornstein-Uhlenbeck operator satisfies a logarithmic
Sobolev inequality which is an equivalent condition as it was proved by Leonard
Gross. Then we will study functional inequalities, which relate the Lp(µ) norm of a
function to the Lq(µ) norm of its (weak) gradient (Sobolev inequalities, logarithmic
Sobolev inequalities, and spectral gap inequalities). Finally, we will also consider
curvature-dimension inequalities.

Résumé (Semigroupes des Opérateurs pour les Polynômes Orthogonaux Classiques et les
Inégalités Fonctionnelles)

Ce cours est consacré à la théorie des semigroupes de Markov. Il présente leurs
propriétés fondamentales et quelques autres résultats. En particulier nous étudions les
semigroupes associés aux familles classiques des polynômes orthogonaux ( semigroupe
d’Ornstein-Uhlenbeck, de Laguerre et de Jacobi) Nous allons étudier en détail la
propriété d’hypercontractivité du semigroupe d’Ornstein-Uhlenbeck. Pour cela, nous
montrons que l’opérateur d’Ornstein-Uhlenbeck vérifie une inégalité logarithmique de
Sobolev, ce qui est équivalent à l’hypercontractivité, comme dé montré par Leonard
Gross. Ensuite nous étudions les inégalités fonctionnelles, qui relient la norme Lp(µ)

d’une fonction à la norme Lq(µ) de son (faible) gradient (inégalités de Sobolev,
inégalités de Sobolev logarithmiques et les inégalités du trou spectral). Finalement,
nous considérons aussi les inégalités courbure–dimension.
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1. Introduction

The theory of operator semigroups is a point of confluence of several areas of
Mathematics. These include functional analysis, harmonic analysis, the theory of or-
thogonal polynomials, differential equations, the theory of probability and control
theory, among others.

In these notes we study the analytical theory of operator semigroups associated
with classical orthogonal polynomials: the Ornstein-Uhlenbeck semigroup, the La-
guerre semigroup and the Jacobi semigroup. We will refer to these semigroups as
classical semigroups, although it would be more accurate to call them “semigroups
generated by classical orthogonal polynomials."

The present notes are strongly influenced by the work of Dominique Bakry ([10],
[11], [12] and [14]). In particular by his notes for the CIMPA School at the Tata Insti-
tute for the Mathematical Science, Mumbay, India [12]. For that reason we are going
to develop semigroup theory from the point of view of probability, focusing mainly
on Markov semigroups in a probability space (E,B, µ). Then we study functional in-
equalities such as the Sobolev inequalities, logarithmic Sobolev inequalities, spectral
gap inequalities, and curvature-dimension inequalities. Those inequalities will allow
us to study a very important property for these semigroups, the hypercontractivity
property. As a consequence of this property we establish the well known multiplier
theorem of P.A. Meyer, not only for expansions in Hermite polynomials, but also for
Laguerre and Jacobi polynomials.

The notes are divided into four sections. Section 1 serves as an introduction. In
section 2 we study the theory of Markov semigroups, establishing their basic proper-
ties and several other results. In particular, we discuss general properties of Markov
semigroups associated with a family of orthogonal polynomials. In section 3 we will
consider in detail the case of Markov semigroups associated with classical orthogo-
nal polynomials–namely, the Ornstein-Uhlenbeck semigroup, the Laguerre semigroup
and the Jacobi semigroup. We use the approach to analyze each of these semigroups.
This approach h help to compare the semigroups, and see clearly their similarities
and differences. Since the Ornstein-Uhlenbeck semigroup has wider attention due to
its applications in Quantum Physics, we focus on it, as well as on its subordinated
semigroup, the Poisson-Hermite semigroup. Finally, in section 4, we prove that the
Ornstein-Uhlenbeck semigroup is not only a contraction semigroup, but that it is
also hypercontractive. In order to do that we will prove, as it was done originally
by Leonard Gross [40], that the Ornstein-Uhlenbeck operator satisfies a logarithmic
Sobolev inequality and then that the hypercontractivity property of the semigroup is
equivalent to that inequality. Then we will study functional inequalities, which relate
the Lp norm of a function to the Lq norm of its (weak) gradient. The functional
inequalities that we are going to study in detail are: Sobolev inequalities, logarithmic
Sobolev inequalities, and spectral gap inequalities. We will analyze their characteris-
tics, their properties and the relations among them. We will also consider curvature-
dimension inequalities which are a development of the famous Bakry-Emery criteria
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for hypercontractivity of a semigroup [13]. These inequalities have important appli-
cations in Differential Geometry and make it possible to analyze the local structure
of differential operators. As we will see, the relationship between curvature-dimension
inequalities and functional inequalities will be crucial in establishing the results in the
last part of the notes.

Since these are lecture notes intended for graduate students, we have tried to make
them as self-contained as possible. Thus, we have provided full details for most of
the proofs. For the same reason, several appendixes are included. The first one con-
siders the Gamma function and related functions. The second one contains the main
properties and formulas of the classical orthogonal polynomials. In the final one, we
study the classical semigroups in Analysis (the heat semigroup and the Poisson semi-
group). This study will make easier the comparison between them and the semigroups
considered in section 2.

The origin of these notes goes back to a seminar we gave during the first semester
2004, at Escuela de Matemáticas de la Facultad de Ciencias Universidad Central de
Venezuela (UCV) on the D. Bakry’s monograph [12]. I want to thank all the partici-
pants in the seminar for their enthusiasm and perseverance. In addition, the talks we
gave at the analysis seminar of the Universidad Central de Venezuela, the Universidad
de los Andes, Université d’ Angers, the University of Kansas and the University of
Missouri, Columbia, helped us to shape these notes. I want to thank Piotr Graczyk
for several conversations on the hypercontractivity property. I am grateful to my stu-
dents Cristina Balderrama and Ebner Pineda for their careful reading and countless
corrections of previous versions of these notes. I must say that their suggestions have
contributed to the improvement of the quality and clarity of the notes, in a remarkable
way. All the remaining errors are my whole responsibility.

This is an English version of the original lectures notes in Spanish prepared, in
February 2006, for the CIMPA School in Mérida, Venezuela. These notes were written
while I was a visiting professor at the University of New Mexico and at De Paul
University (2006-2008). I want to thank the Department of Mathematics and Statistics
at UNM and the Department of Mathematical Sciences for their support. I must
thank Cristina Balderrama, Marsall Ash, Laura de Carli, Cornelis Onneweer and
Constantine Georgakis for their corrections and observations that improved greatly
the translated version. Finally my gratitude and my love to my wife Luisela Alvaray
for her infinite patience during the long nights I devoted in writing and translating
these notes.

2. Markov Semigroups

2.1. Basic Definitions. — A one-parameter semigroup of operators {Tt}t≥0 on a Ba-
nach space X is a family of operators indexed by non-negative real numbers such
that

i) T0 = I, the identity operator in X.
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ii) Ts+t = Ts ◦ Tt, for all t, s ≥ 0.

We are going to develop the theory of operator semigroups from the point of view
of probability theory and for that reason we are going to focus our study on Markov
semigroups in a probability space (E,B, µ).

Definition 2.1. — A family of transition probabilities {Pt(x, dy)} is a family of kernels
Pt(x, dy) such that for all t ≥ 0

i) Pt(·, B) is a measurable function, for each B ∈ B.
ii) Pt(x, ·) is a probability measure on (E,B), for x ∈ E.

Definition 2.2. — A Markov semigroup on E is a family of transition probability ker-
nels {Pt(x, dy)} that satisfy the following properties:

i) P0(x, dy) is the unit mass at x
ii) The Chapman-Kolmogorov identity holds

(2.1)
∫
E

Ps(x, dy)Pt(y, dz) = Ps+t(x, dz).

Markov semigroups appear naturally in the study of Markov processes, where the
probability measure Pt(x, dy) is the law of a Markov process {Xt}, with values in
E, starting from the point x at time 0. More precisely, given Markov semigroup
on E a Markov process {Xt} can be constructed by defining its finite-dimensional
distributions

Prob{Xt1 ∈ B1, Xt2 ∈ B1, · · · , Xtk ∈ Bk|X0 = x} =∫
Bk

· · ·
∫
B2

∫
B1

Pt1(x, dy1)Pt2−t1(y1, dy2) · · ·Ptk−tk−1
(yk−1, dyk).(2.2)

However, we are not going to consider Markov processes, and we refer to [19] or [50],
and also to the notes of P. Graczyk in this volume for details.

Our main interest is the family of Markov operators {Tt}t≥0 defined on the space
of positive or bounded Borel-measurable functions on E by

(2.3) Ttf(x) =

∫
E

f(y)Pt(x, dy).

This family can be identified then with the Markov semigroup {Pt(x, dy)} in a natural
way and entirely characterizes it. We also require that, for each function f ∈ L2(µ) =

L2(E,B, µ),

lim
t→0+

Ttf = f,

where the limit is in the L2(µ) sense.
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By the Chapman-Kolmogorov identity for {Pt(x, dy)} (2.1), it is clear that the
family {Tt} is a semigroup of operators, since

(Tt ◦ Ts)f(x) = Tt(

∫
E

f(y)Ps(x, dy)) =

∫
E

∫
E

f(y)Ps(u, dy)Pt(x, du)

=

∫
E

f(y)

∫
E

Ps(u, dy)Pt(x, du) =

∫
E

f(y)Pt+s(x, dy) = Tt+sf(x).

Moreover, by property ii) for transition probabilities, the operator Tt clearly pre-
serves positivity, that is to say if f ≥ 0 then

Ttf(x) =

∫
E

f(y)Pt(x, dy) ≥ 0,

since Pt(x, dy) is a (positive) probability measure and for the same reason Tt is con-
servative,

(2.4) Tt1 = 1.

In general, we will say that a semigroup of operators {Tt}t≥0 satisfies the Markov
property, if it is conservative and preserves positivity. In that case we will call {Tt}t≥0

a Markov (operator) semigroup.
Since Tt is given in terms of a probability measure, by Jensen’s inequality, we have

for any convex function φ,

(2.5) Tt(φ ◦ f) ≥ φ(Ttf).

If we consider the Markov process {Xt} on E associated with the Markov semigroup
{Pt(x, dy)} on E, then we can represent the latter as

(2.6) Ttf(x) = E[f(Xt)|X0 = x].

Definition 2.3. — We say a probability measure µ of the probability space (E,B, µ)

is an invariant measure (or stationary measure) for the semigroup {Tt}, if

(2.7)
∫
E

Ttf dµ =

∫
E

f dµ,

for any positive function f ∈ L1(µ) = L1(E,B, µ) .

In most cases, the invariant measure of a semigroup {Tt}t≥0 is unique, up to a
multiplicative constant. If the measure µ is finite we always normalize it so that it is
a probability measure.

Let us observe that if µ is an invariant measure for the semigroup {Tt}, then for
any f ∈ L1(µ), we have∫

E

Ttf dµ =

∫
E

Tt(f
+ − f−) dµ =

∫
E

(Ttf
+ − Ttf−) dµ

=

∫
E

(f+ − f−) dµ =

∫
E

f dµ.
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