
Séminaires & Congrès
25, 2012, p. 61–110

RANDOM MATRICES AND ORTHOGONAL POLYNOMIALS

by

Jacques Faraut

Abstract. — The central question of the theory of random matrices is to determine
the asymptotic behavior of the eigenvalues of large random symmetric or Hermitian
matrices. In the case of the Gaussian Unitary Ensemble (GUE), i.e. the space of
Hermitian matrices equipped with a unitarily invariant Gaussian probability, Mehta’s
formulae express the eigenvalue density in terms of the Christoffel-Darboux kernel of
the Hermite polynomials. In fact orthogonal polynomials are a powerful tool in this
theory. We will present in this course methods in the theory of random matrices which
are using orthogonal polynomials.

Résumé (Matrices aléatoires et polynômes orthogonaux). — La question centrale de la
théorie des matrices aléatoires est de déterminer le comportement asymptotique
des valeurs propres d’une matrice symétrique ou hermitienne de grande dimension.
Dans le cas de l’Ensemble Unitaire Gaussien (GUE), c’est-à-dire l’espace des
matrices hermitiennes muni d’une probabilité gaussienne invariante par le groupe
unitaire, les formules de Mehta expriment la densité des valeurs propres à l’aide
du noyau de Christoffel-Darboux des polynômes d’Hermite. En effet les polynômes
orthogonaux sont un outil puissant dans cette théorie. Nous présenterons dans ce
cours des méthodes de la théorie des matrices aléatoires qui utilisent les polynômes
orthogonaux.

1. Introduction

For F = R, C or H, let Hn = Herm(n,F) be the space of n×n Hermitian matrices
with entries in F. On Hn one considers the probability law defined by

Pn(dx) =
1

Cn
exp
(
−γtr (x2)

)
m(dx),
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where γ is a positive parameter, m is the Euclidean measure associated with the inner
product

(x|y) = tr (xy),

and
Cn =

∫
Hn

exp
(
−γtr (x2)

)
m(dx) =

(…π

γ

)N
,

where
N = dimR Hn = n+

β

2
n(n− 1), β = dimR F = 1, 2, 4.

This probability is invariant under the group Un = U(n; F) of n× n unitary matrices
with entries in F, acting on Hn by the transformations

x 7→ uxu∗ (u ∈ Un).

For F = R, it is the orthogonal group O(n), for F = C it is the unitary group U(n),
and for F = H, it is isomorphic to the symplectic group Sp(n), maximal compact
subgroup of the complex symplectic group Sp(n,C).

The probability space (Hn,Pn) is called Gaussian Orthogonal Ensemble (GOE)
for F = R, Gaussian Unitary Ensemble (GUE) for F = C, and Gaussian Symplectic
Ensemble (GSE) for F = H.

The general problem in the theory of random matrices is to study asymtotics of
probabilities related to the eigenvalues of a random matrix for large n.

1.1. Statistical distribution of the eigenvalues. — If B ⊂ R is a Borel set, one denotes
by ξn,B the random variable defined by

ξn,B(x) =
1

n
#{eigenvalues of x in B}.

Let µn(B) be its expectation,

µn(B) = En(ξn,B).

Then µn is a probability measure on R, it is the statistical distribution of the eigen-
values. If χB is the characteristic function of the set B, then

ξn,B(x) =
1

n

(
χB(λ1) + · · ·+ χB(λn)

)
,

where λ1, . . . , λn denote the eigenvalues of x. In the sense of functional calculus this
can be written

ξn,B(x) =
1

n
trχB(x).

Therefore
µn(B) =

1

n

∫
Hn

trχB(x)Pn(x).

More generally, if ϕ is a bounded measurable function on R,∫
R
ϕ(t)µn(dt) =

1

n

∫
Hn

tr
(
ϕ(x)

)
Pn(dx).
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Question : what can be said about the asymptotics of µn as n goes to infinity ? The
answer is given by the following theorem of Wigner.

The semi-circle law σa of radius a is the probability measure defined on R by∫
R
ϕ(t)σa(dt) =

2

πa2

∫ a

−a
ϕ(t)

√
a2 − t2dt.

The theorem of Wigner says that, after scaling, the measure µn converges to the
semi-circle law σa of radius

a =

 
β

γ
.

Theorem 1.1 (Wigner). — Let ϕ be a bounded continuous function on R. Then

lim
n→∞

∫
R
ϕ
( t√

n

)
µn(dt) =

2

πa2

∫ a

−a
ϕ(u)

√
a2 − u2du.

This means that, for large n, the density of eigenvalues is approximatively
2

πa2

√
na2 − λ2,

if |λ| ≤ a
√
n, and 0 if |λ| ≥ a

√
n.

In the original proof Wigner considers the moments of the measure µn:

Mk(µn) =

∫
R
tkµn(dt) =

1

n

∫
Hn

tr (xk)Pn(dx),

and by combinatorial computations determines the asymptotics of Mk(µn) as n goes
to infinity: for k fixed,

M2k(µn) ∼
( β

4γ

)k (2k)!

k!(k + 1)!
nk.

Note that the moments of odd order vanish. On the other hand it is easy to compute
the moments of the semi-circle law:

M2k(σa) =
(a2

4

)k (2k)!

k!(k + 1)!
.

In fact

M2k(σa) =
2

πa2

∫ a

−a
t2k
√
a2 − t2dt =

2a2k

π

∫ 1

0

uk−
1
2

√
1− udu

=
2a2k

π
B
(
k +

1

2
,

3

2

)
=

2a2k

π

Γ
(
k + 1

2

)
Γ
(

3
2

)
Γ(k + 2)

=
a2k

22k

(2k)!

k!(k + 1)!
.

The proof by Pastur uses the Cauchy transform. Recall that the Cauchy transform
of a probability measure µ on R is the function Gµ defined on C \ R by

Gµ(z) =

∫
R

1

z − t
µ(dt).
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For µ = µn, writing Gµn = Gn,

Gn(z) =
1

n

∫
Hn

tr
((
zI − x)−1

)
Pn(dx).

After scaling one has to look at the functions

G̃n(z) =
√
nGn(

√
nz).

The proof amounts to showing that the functions G̃n converge,

lim
n→∞

G̃n(z) = f(z),

and that the limit f is a holomorphic function satisfying

f(z)2 − 4

a2
zf(z) +

4

a2
= 0.

Since =Gn(z) < 0 and hence =f(z) < 0 for =z > 0, necessarily

f(z) =
2

a2

(
z −

√
z2 − a2

)
,

which is the Cauchy transform of the semi-circle law σa.

The proof we will present uses the Fourier transform,

µ̂n(τ) =

∫
R
e−itτµn(t) =

1

n

∫
Hn

tr
(
exp(−iτx)

)
Pn(dx).

We will see that it can be computed in terms of Laguerre polynomials. The conver-
gence to the semi-circle law will follow by using the classical Lévy-Cramér theorem.

More general results are obtained by using logarithmic potential theory. One defines
the energy of a probability measure µ on R by

I(µ) =

∫
R2

log
1

|s− t|
µ(ds)µ(dt) +

∫
R
V (t)µ(dt).

For V (t) = γt2, the semi-circle law appears as equilibrium measure: measure which
realizes the minimum of the energy.

1.2. Local behaviour : the probabilities An(m, θ). — For θ > 0, and 0 ≤ m ≤ n, one
denotes by An(m, θ) the probability that a matrix x ∈ Hn has m eigenvalues in
the interval [−θ, θ]. By using orthogonal polynomials one can evaluate the probabil-
ity An(m, θ) in terms of Fredholm determinants, and its behaviour as n → ∞. In
particular we will see that, for m = 0,

lim
n→∞

An

(
0,

θ√
2n

)
= Det[−θ,θ](I −K),

where Det is the Fredholm determinant, and K is the kernel

K(ξ, η) =
1

π

sin(ξ − η)

ξ − η
,

restricted to the square [−θ, θ]× [−θ, θ].
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1.3. Wishart Unitary Ensemble. — In the last chapter we consider theWishart Unitary
Ensemble. In that case there is an analogue of Wigner Theorem: It is Marchenko-
Pastur Theorem which describes the asymptotic of the statistical distribution of the
eigenvalues for a Wishart random matrix.

2. Orthogonal polynomials

2.1. Heine’s formulae. — Let µ be a positive measure on R. We assume that the
support of µ is infinite, and that, for all m ≥ 0,∫

R
|t|mµ(dt) <∞.

Hence, for all j ∈ N, the moment of order j,

mj =

∫
R
tjµ(dt),

is defined. On the space P of polynomials in one variable with real coefficients one
considers the inner product

(p|q) =

∫
R
p(t)q(t)µ(dt),

for which P is a pre-Hilbert space. The monomials 1, t, . . . , tm, . . . are independent,
and, by the Gram-Schmidt orthogonalization, one gets a sequence {pm} of orthogonal
polynomials: pm is of degree m, and∫

R
pm(t)pn(t)µ(dt) = 0 if m 6= n.

If {pm} is a sequence of orthogonal polynomials we will write

pm(t) = amt
m + · · · ,

dm =

∫
R
pm(t)2µ(dt).

Example: Hermite polynomials. The measure µ is Gaussian :

µ(dt) = e−t
2

dt.

The Hermite polynomial Hm is defined by

Hm(t) = (−1)met
2
( d
dt

)m
e−t

2

.

Notice that am = 2m. By integrating by parts one shows that

dm = 2mm!
√
π.

In fact, for any polynomial p,∫
R
Hm(t)p(t)e−t

2

dt =

∫
R
p(m)(t)e−t

2

dt,
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