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OPERADS OF NATURAL OPERATIONS I:
LATTICE PATHS, BRACES AND HOCHSCHILD COCHAINS

by

Michael Batanin, Clemens Berger & Martin Markl

Abstract. — In this first paper of a series we study various operads of natural opera-
tions on Hochschild cochains and relationships between them.

Résumé (Opérades des opérations naturelles I: chemins brisés, opérations brace et cochaînes de
Hochschild)

Dans ce premier article d’une série nous étudions et comparons plusieurs opé-
rades munies d’une action naturelle sur les cochaines de Hochschild d’une algèbre
associative.

1. Introduction

This paper continues the efforts of [14, 3, 2] in which we studied operads natu-
rally acting on Hochschild cochains of an associative or symmetric Frobenius algebra.
A general approach to the operads of natural operations in algebraic categories was
set up in [14] and the first breakthrough in computing the homotopy type of such
an operad has been achieved in [3]. In [2], the same problem was approached from
a combinatorial point of view, and a machinery which produces operads acting on the
Hochschild cochain complex in a general categorical setting was introduced.

The constructions of [2] have some specific features in different categories which are
important in applications. In this first paper of a series entitled ‘Operads of Natural
Operations’ we begin a detailed study of these special cases.
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2 MICHAEL BATANIN, CLEMENS BERGER & MARTIN MARKL

It is very natural to start with the classical Hochschild cochain complex of an
associative algebra. This is, by far, the most studied case. It seems to us, however,
that a systematic treatment is missing despite its long history and a vast amount
of literature available. One of the motivations of this paper was our wish to relate
various approaches in literature and to provide a uniform combinatorial language for
this purpose.

Here is a short summary of the paper.
In section 2 we describe our main combinatorial tool: the lattice path operad L and

its condensation in the differential graded setting. This description leads to a careful
treatment of (higher) brace operations and their relationship with lattice paths in
section 3.

The lattice path operad comes equipped with a filtration by complexity [2]. The
second filtration stage L(2) is the most important for understanding natural operations
on the Hochschild cochains. In section 4 we give an alternative description of L(2) in
terms of trees, closely related to the operad of natural operations from [14]. Finally,
in section 5 we study various suboperads generated by brace operations. The main
result is that all these operads have the homotopy type of a chain model
of the little disks operad. For sake of completeness we add a brief appendix
containing an overview of some categorical constructions used in this paper.
Convention. If not stated otherwise, by an operad we mean a classical symmetric
(i.e. with the symmetric groups acting on its components) operad in an appropriate
symmetric monoidal category which will be obvious from the context. The same con-
vention is applied to coloured operads, substitudes, multitensors and functor-operads
recalled in the appendix.
Acknowledgement. We would like to express our thanks to the referee for carefully
reading the paper and many useful remarks and suggestions.

2. The lattice path operad

As usual, for a non-negative integer m, [m] denotes the ordinal 0 < · · · < m. We
will use the same symbol also for the category with objects 0, . . . ,m and the unique
morphism i → j if and only if i ≤ j. The tensor product [m] ⊗ [n] is the category
freely generated by the (m,n)-grid which is, by definition, the oriented graph with
vertices (i, j), 0 ≤ i ≤ m, 0 ≤ j ≤ n, and one oriented edge (i′, j′) → (i′′, j′′) if and
only if (i′′, j′′) = (i′ + 1, j′) or (i′′, j′′) = (i′, j′ + 1).

Let us recall, closely following [2], the lattice path operad and its basic properties.
For non-negative integers k1, . . . , kn, l and n ∈ N put

L(k1, . . . , kn; l) := Cat∗,∗([l + 1], [k1 + 1]⊗ · · · ⊗ [kn + 1])

where ⊗ is the tensor product recalled above and Cat∗,∗([l+1], [k1 +1]⊗· · ·⊗ [kn+1])

the set of functors ϕ that preserve the extremal points, by which we mean that

(1) ϕ(0) = (0, . . . , 0) and ϕ(l + 1) = (k1 + 1, . . . , kn + 1).
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A functor ϕ ∈ L(k1, . . . , kn; l) is given by a chain of l + 1 morphisms ϕ(0) →
ϕ(1)→ · · · → ϕ(l+ 1) in [k1 + 1]⊗ · · · ⊗ [kn + 1] with ϕ(0) and ϕ(l+ 1) fulfilling (1).
Each morphism ϕ(i) → ϕ(i + 1) is determined by a finite oriented edge-path in the
(k1 + 1, . . . , kn + 1)-grid. For n = 0, L(; l) consists of the unique functor from [l + 1]

to the terminal category with one object.

2.1. Marked lattice paths. — We will use a slight modification of the terminology
of [2]. For non-negative integers k1, . . . , kn ∈ N denote by Q(k1, . . . , kn) the inte-
gral hypercube

Q(k1, . . . , kn) := [k1 + 1]× · · · × [kn + 1] ⊂ Z×n.

A lattice path is a sequence p = (x1, . . . , xN ) of N := k1 + · · ·+ kn + n+ 1 points of
Q(k1, . . . , kn) such that xa+1 is, for each 0 ≤ a < N , given by increasing exactly one
coordinate of xa by 1. A marking of p is a function µ : p → N that assigns to each
point xa of p a non-negative number µa := µ(xa) such that

∑N
a=1 µa = l.

We can describe functors in L(k1, . . . , kn; l) as marked lattice paths (p, µ) in the
hypercube Q(k1, . . . , kn). The marking µa = µ(xa) represents the number of elements
of the interior {1, . . . , l} of [l + 1] that are mapped by ϕ to the ath lattice point xa
of p. We call lattice points marked by 0 unmarked points so the set of marked points
equals ϕ({1, . . . , l}). For example, the marked lattice path

(2)

•0-•3-•1
•0-•2
•0
•0-•2

represents a functor ϕ ∈ L(3, 2; 8) with ϕ(0) = (0, 0), ϕ(1) = ϕ(2) = ϕ(3) = (1, 0),
ϕ(4) = (2, 0), ϕ(5) = ϕ(6) = (3, 1) and ϕ(7) = ϕ(8) = ϕ(9) = (4, 3). The lattice is
trivial for n = 0, so the unique element of L(; l) is represented by the point marked l,
i.e. by •l.

2.2. Definition. — Let p ∈ L(k1, . . . , kn; l) be a lattice path. A point of p at which p
changes its direction is an angle of p. An internal point of p is a point that is not an
angle nor an extremal point of p. We denote by Angl(p) (resp. Int(p)) the set of all
angles (resp. internal points) of p.

For instance, the path in (2) has 4 angles, 2 internal points, 4 unmarked points
and 1 unmarked internal point.

Following again [2] closely, we denote, for 1 ≤ i < j ≤ n, by pij the projection
of the path p ∈ L(k1, . . . , kn; l) to the face [ki + 1] × [kj + 1] of Q(k1, . . . , kn); let
cij := #Angl(pij) be the number of its angles. The maximum c(p) := max{cij} is
called the complexity of p. Let us finally denote by L(c)(k1, . . . , kn; l) ⊂ L(k1, . . . , kn; l)

the subset of marked lattice paths of complexity ≤ c. The case c = 2 is particularly
interesting, because L(2)(k1, . . . , kn; l) is, by [2, Proposition 2.14], isomorphic to the
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space of unlabeled (l; k1, . . . , kn)-trees recalled on page 19. For convenience of the
reader we recall this isomorphism on page 20.

As shown in [2], the sets L(k1, . . . , kn; l) and their subsets L(c)(k1, . . . , kn; l), c ≥ 0,
form an N-coloured operad L and its sub-operads L(c). To simplify formulations, we
will allow c =∞, putting L(∞) := L.

2.3. Convention. — Since we aim to work in the category of abelian groups, we will
make no notational difference between the sets L(c)(k1, . . . , kn; l) and their linear
spans.

The underlying category of the coloured operad L (which coincides with the un-
derlying category of L(c) for any c ≥ 0) is, by definition, the category whose objects
are non-negative integers and morphism n → m are elements of L(n,m), i.e. non-
decreasing maps ϕ : [m+ 1]→ [n+ 1] preserving the endpoints.

By Joyal’s duality [12], this category is isomorphic to the (skeletal) category ∆

of finite ordered sets, i.e. L(n,m) = ∆(n,m). The operadic composition makes the
collection L(c)(•1, . . . , •n; •) (with c = ∞ allowed) a functor (∆op)×n × ∆ → Abel,
i.e. n-times simplicial 1-time cosimplicial Abelian group.

Morphisms in the category ∆ are generated by the cofaces di : [m−1]→ [m] given
by the non-decreasing map that misses i, and the codegeneracies si : [m + 1] → [m]

given by the non-decreasing map that hits i twice. In both cases, 0 ≤ i ≤ m. Let us
inspect how these generating maps act on the pieces of the operad L(c).

2.4. Simplicial structures. — We describe the induced rth (1 ≤ r ≤ n) simplicial maps

∂ri : L(c)(k1, . . . , kr−1,m, kr+1, . . . , kn; l)→ L(c)(k1, . . . , kr−1,m−1, kr+1, . . . , kn; l),

where m ≥ 1, 0 ≤ i ≤ m, and

σri : L(c)(k1, . . . , kr−1,m, kr+1, . . . , kn; l)→ L(c)(k1, . . . , kr−1,m+1, kr+1, . . . , kn; l),

where 0 ≤ i ≤ m. To this end, we define, for each m ≥ 1 and 0 ≤ i ≤ m, the
epimorphism of the hypercubes

Dr
i : Q(k1, . . . , kr−1,m, kr+1, . . . , kn) � Q(k1, . . . , kr−1,m−1, kr+1, . . . , kn)

by

Dr
i (a1, . . . , ar, . . . , an) :=

{
(a1, . . . , ar, . . . , an), if ar ≤ i, and
(a1, . . . , ar − 1, . . . , an), if ar > i,

where (a1, . . . , ar, . . . , an) ∈ Q(k1, . . . , kr−1,m, kr+1, . . . , kn) is an arbitrary point. In
a similar fashion, the monomorphism

Sri : Q(k1, . . . , kr−1,m, kr+1, . . . , kn) ↪→ Q(k1, . . . , kr−1,m+1, kr+1, . . . , kn)

is, for 0 ≤ i ≤ m, given by

Sri (a1, . . . , ar, . . . , an) :=

{
(a1, . . . , ar, . . . , an), if ar ≤ i, and
(a1, . . . , ar + 1, . . . , an), if ar > i.
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